

One-dimensional model: Differential equations $\left(\frac{I-i}{4F} + \lambda_W^d \frac{I}{F}\right) \frac{dC_f}{dx} + \frac{I}{4F} \left(1 - C_f\right) \frac{di}{dx}$ PEM $D_f^{e\!f\!f} \, {d^2 C_f \over d^2 C_f}$ $\frac{1}{4F} = \frac{I-i}{4F}\frac{dC_f}{dx} + \frac{I}{4F}\left(1\right)$ SOFC Mass transport $\frac{\gamma}{C_f} \frac{dC_f}{dx} + \frac{4a_a F}{RT} \left[\left(R_m + R_s \right) i - R_s I \right]$ d^2i di \overline{dx} **Current density** PORTUGAL Alcasve -NATIONAL CENTRE FOR SCIENTIFIC RESEARCH "DEMOKRITOS

Two-dimensional model: Differential equations $\nabla \underline{u} = -\nabla p + \mu \nabla^2 \underline{u}$ Flow $\nabla \cdot \left[\left(\rho c_p T \right) \underline{u} \right] = \dot{Q} + \nabla \cdot a \nabla \left(\rho c_p T \right)$ Heat $\underline{u} \cdot \nabla C_i - \nabla \cdot \left(D_{i,mix} \nabla C_i \right) = 0$ Mass $\left(\frac{a_a F}{RT}\eta\right) - \exp\left(-\frac{a_c F}{RT}\eta\right)$ Charge exp

