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The problem of mass transfer from a Newtonian fluid stream
to a swarm of adsorbing stationary solid spheroidal particles
under creeping flow conditions is considered. The “*spheroid-in-
cell” model is used for the representation of the swarm and the
axis of symmetry is assumed parailel to the approaching uniform
stream. An analytical solution to the convective diffusion equa-
tion for high Peclet number is obtained using Levich’s method.
Simple analytical expressions are derived for the dimensionless
concentration, the local Sherwood number, and the thickness
of the diffusion layer in terms of the Peclet number, the porosity
of the swarm, and the position on a meridian plane. It is found
that for prolate spheroids-in-cell the diffusion film thickness is
minimal at the stagnation point as in the case of spheres-in-cell.
However, in the case of oblate spheroids-in-cell the diffusion
layer thickness becomes minimal at positions between the stag-
nation point and the equator. Calculated values of the overall
mass transfer coefficient indicate that the adsorption rate is
higher for oblate spheroids-in-cell than for spheres-in-cell and
prolate spheroids-in-cell, assuming either the same volume, or
the same surface area. The mass transfer coefficient increases
with decreasing porosity of the swarm for all geometries studied.
© 1993 Academic Press, Inc.

1. INTRODUCTION

Mass transfer from a moving fluid to a swarm of adsorbing
stationary particles is encountered in a large number of in-
dustrial processes (chemical reactors, filters, flooding pro-
cesses, etc.). Very often the particles are sufficiently small
and the flow sufficiently slow to justify the assumption of
creeping flow. Another assumption that can be usually made
(especially in the case of liquid solutions and colloidal sus-
pensions} is that the Peclet number is much larger than unity.
Finally, the assumption that the fluid viscosity, i, and den-
sity, g, are independent of the concentration of the diffusing
species makes it possible to uncouple the flow problem from
the mass-transfer problem.
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Exact analytical solutions of the problem of creeping flow
through a swarm of particles are available for the case of
uniform spherical particles in a regular packing. In more
complicated cases it is rather difficult to find an analytical
solution. In such cases, it is often useful to use a suitable
model to approximate the real flow field. A fundamental
modeling concept is the representation of any particle of the
swarm as a solid sphere, and the flow around it as the fiow
in a spherical fluid layer {of appropriate thickness) envel-
oping the solid sphere. The thickness of the flmd layer is
adjusted so that the solid volume fraction of the cell equals
the solid volume fraction of the swarm.

Happel { 1) developed the prototype of a class of models
that have become known as “sphere-in-cell” models, Ku-
wabara (2) proposed a closely related model independently.
The major differences between these two models are the fol-
lowing two: Happel’s model assumes that the outer fluid
surface is stationary and that the solid sphere moves with a
constant velocity. Furthermore, it assumes that the shear
stress on the outer fluid surface vanishes everywhere. Ku-
wabara’s model assumes that the solid sphere is stationary
and that there is a radial velocity distribution on the outer
fluid envelope corresponding to a uniform approach velocity.
Furthermore, it assumes that the vorticity on the outer fluid
surface (rather than the shear stress) vanishes everywhere,
By superimposing a negative appreach velocity on Kuwa-
bara’s solution one can obtain a flow corresponding to (but
not coinciding with) that of Happel, As Tien (3) has pointed
out, the two models give very similar flow fields for a wide
range of porosity values.

In addition to the “sphere-in-cell” models, a similar class
of models has been proposed by Happel (1) and Kuwabara
(2), namely, the “cylinder-in-cell” models, which are suitable
for modeling flow through fibrous mats, arrays of parallel
fibers, etc.

An important improvement on the Happel and Kuwabara
models was proposed by Neale and Nader (4), who consid-
ered that the basic cell is embedded into an unbounded,
continuous, homogeneous, and isotropic permeable medium
which has the same permeability as that of the swarm of
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particles. The flow in the exterior permeable medium is de-
scribed by Brinkman’s equation. This model is a combina-
tion of the Happel ‘‘sphere-in-ceil” concept with the Brink-
man model (5). The case of a permeable inner sphere sur-
rounded by a free surface envelope has also been treated
with a similar approach (6).

In all the aforementioned works the particles were assumed
to be either spherical or cylindrical, In practice { during depth
filtration or fluid-solid reaction processes, for instance),
particles or grains are often nonspherical; in fact, their shape
is closer to spheroidal than to spherical. Epstein and Maslivah
(7) have formulated a “spheroid-in-cell” model using the
zero vorticity condition of Kuwabara and the free surface
condition of Happel at the outer boundary, and solved the
carresponding flow problems numericaily. Recently, Dassios
et al. (8) developed an analytical series-expansion solution
to the creeping flow equation in spheroids-in-cell using the
zero vorticity boundary condition.

All these models are useful for examining mass transfer
processes from the moving fluid to the swarm and vice versa.
Pfeffer and Happel (9 ) and Pfeffer ( 10) used Happel’s model
to solve the problem of mass transfer to a sphere in a swarm
for the case of high Peclet number, and obtained an expres-
sion of the form Sh, = f(v)Pe'/?, where Sh, is the overall
Sherwood number, Pe is the Peclet number, and f(y) is a
simple analytic function of the solid volume fraction, . This
solution was obtained using the method of Levich (11), who
solved the problem of high Pe mass transfer from a quiescent
unbounded fluid to an adsorbing solid sphere falling through
it with constant velocity. Levich showed that for Pe » 1 mass
transfer occurs in a very thin concentration boundary layer
near the solid sphere. He calculated the overall Sherwood
number for this case, and obtained the expression Sh, =
0.997 Pe'/3. The Levich solution was also obtained inde-
pendently by Friedlander (12) and Lochiel and Calderbank
(13), whereas a second order correction to this expression
was introduced by Acrivos and Goddard (14).

Tardos et al. (15) obtained expressions of the form Sh, =
0.997g(¢)Pe'’?, using the Happel, Kuwabara, and Neale
and Nader models, where g(¢) is a model dependent function
of the porosity, e. These authors have pointed out that the
model of Neale and Nader gives somewhat better agreement
with experimental data than the other two models.

In the present work, we use the “spheroid-in-cell” model
of Dassios et al. (8) to solve the corresponding problem of
mass transfer from a spheroidal fluid envelope to an adsorb-
ing solid spheroid (for Re < 1 and Pe 3 1), This solution
can be used to model low-Re/high-Pe mass transfer to a
swarm of adsorbing spheroidai particles, in the same way in
which the works of Pfeffer and Happel (9) and Tardos et a!.
(15} are used for swarms of adsorbing spheres. We provide
analytical expressions for the concentration, and for the local
and overall Sherwood numbers. The mass transfer occurs in
a very thin boundary layer near the solid spheroid, the thick-
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ness of which is given as a function of position, Peclet num-
ber, porosity, and axis ratio for prolate and oblate spheroidal
geometries,

2. FORMULATION AND SOLUTION OF THE
PROBLEM: THE PROLATE-SPHEROID-IN-CELL
CASE

We consider a solid spheroid with long semiaxis 43 and
short semiaxis d, (Fig. la). We consider first the case of a
prolate spheroid (d; > 4,). As we see later, our results can
easily be converted to the case of an oblate spheroid using a
simple transformation. The semifocal length ¢ is defined by
¢=(d3 — di)"'?, and the eccentricity by ¢ = &/d;. We also
consider a larger confocal prolate spheroidal surface with
long semiaxis b5 and short semiaxis 3, , surrounding the solid
spheroid, The space between the two spheroidal surfaces is
occupied by a Newtonian fluid having dynamic viscosity g
and density p. The spheroid-in-cell is used as a model for a
swarm of spheroids, as in Dassios ¢ /. (8). The dimensions
of the outer sphercidal surface are determined so that the
solid volume fraction of the spheroid-in-cell is equal to the
solid volume fraction of the swarm, +. The inner spheroid
is stationary while the fluid in the cell flows past it in an
upward direction. This flow is caused by a umiform stream
moving at a velocity of magnitude i1 { at the outer boundary)
in the positive z-direction. The approaching fluid is a dilute
solution of 4 in B, with free stream concentration &, .. We
assume that 4 diffuses toward the solid surface, where it is
adsorbed instantly.

For convenience, we work with dimensionless variables,
using 4, as the characteristic length, i as the characteristic
velocity, and é; ., as the characteristic concentration, Di-
mensionless variables are denoted with the same symbols as
the corresponding dimensional ones but without the tilde.
Assuming, now, that the physical properties of the fluid (&
and p) are independent of the concentration of 4, ¢,, the
flow problem becomes uncoupled from the mass-transfer
problem, and can be solved separately. This solution was
reported in Dassios ef 4/. (8} and is used here. The leading
term of the solution for the stream function is given by

2

W =5 [Asz(T) 4 Aa(SG““ﬂ)

Gi(p)

GI(T) + G4(T))

t A4Hz(7)]Gz(§'), {1}

and is known to approximate the full solution with sufficient
accuracy for small and medium aspect ratios (7). Here
and ¢{ are independent variables, defined by

[2]

T=coshy, ¢{=cosb,
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FIG. 1. Solid prolate spheroid in a confocal prolate spheroidal envelope
(some characteristic stream lines are included) (a) and prolate spheroidal
coordinates system (b).
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where n and 6 are the prolate spheroidal coordinates (Fig.
1b). G.(x) and H,(x) denote the Gegenbauer functions of
the first and second kind, respectively, of degree (—1) and
order n, where D, A;, A; and Ay are constants that depend
on the geometry of the spheroid-in-cell (7). (For the sake
of completeness, the expressions for D, A;, Aj, and A, are
given in Appendix A.) The value of 7 on the solid spheroidal
surface is

- (3]

as
r,=cosha=—=¢
C

whereas on the outer spheroidal surface it is
b
Tg = cosh,8=f, [4a]

where

with
Ta Ez_ ﬁ3u3
bl /(5] -5
as ﬁz_ Ef31;r3
EVE -G e

If the expression under the square root sign is negative, then
the following expression for &; must be used:

el (332)

= COS
2ye?

3 [5b]

The components of the dimensionless velocity ¥ are obtained
by differentiation of i,

v, = 1 % [6a]
B PR O PR Y
1 (e [6b]

621',‘1_2 _ 5—2‘”1 _ KZE

Assuming pseudo-steady state in the mass transport problem
{as was also done in solving the flow problem), and that the
diffusion coefficient and total concentration are constant,
the equation governing the convective diffusion of 4 becomes

v-Ve, = Pe~'Vic, (7]
with Pe = ﬁd;/ﬁAg.

For Pe » 1 the thickness of the concentration boundary
layer is negligible compared to the local radius of curvature
of the particle. Neglecting the curvature term, invoking the
axial symmetry, and using prolate spheroidal coordinates,
Eq. [7] becomes

de, d
v, Vri—1 f—v,,Vl - ai;
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This equation is to be integrated with the following boundary
condiiions:

B.C.1: ci=0
B.C.2: cy=1
B.C.3: ¢, is finite

onT =7, 191
[10]

f1]

as T —= oo

as {— —1 {7 # 7,).

By replacing 7- with J-differentiation { von Mises transfor-
mation), Eq. [8] becomes

.19_ 2 zf,—zﬁfd
au,/[vavl vy fWL [12]

The concentration boundary layer is expected to be thin
for Pe » |, which justifies the use of B.C.2 in the convenient
form of Eq. [10], rather than as ¢4 = | on 7 = 74. Defining
a new variable y = v - 7., we have y € 7, in the region of
interest, It is simple to show, using second order expansion
in y, that in this region Eq. [1] can be written as

2
¢
xb%*BEysz(s“); V<, [13)
with
Ay 15, 3A,
E 2 + ! A3Ta 4
A4 ‘?'a‘+1 A4 Ta
24 -2 14
t 4 To—1 2 721 [14]

Substituting  from Eq. [13] into Eq. [6b] and then replacing
¥ by its expression in terms of ¢, one obtains

| 2F
_— S V. 15
Vg W 02D l,b [ ]
Eqguations [12] and [15] give
Ocs Cpa-la2.2 2E
3 =—Pe 'c(ra— 1) D
V- 22 V5% ne
el N
The boundary conditions become
BCl:ecs=0 ong =0 [17]

BC2:¢y=1 asy - —w [18]

B.C.3: ¢4 is finite as §{ — —1 (¥ # 0). (19]

If we define a new variable, ¢, by

2 IS
t=—-Pelc(+2 - 1)\/—;?[ Vi —¢2dg,  [20]
-1
Equation [16] is transformed to

dc, 0
| 21

aCA
V5 ] ,
which is identical to that obtained by Levich (11) in solving
the problem for a single sphere. Since the B.C.’s, [17]-[19],

are also the same as those in the Levich problem, the con-
centration in the fluid phase can be directly expressed as

1 z 4
a2y = — exp(— - z’B)dz',

22
1.17 Jo 9 (221

where z is an appropriately defined variable. In the prolate-
spheroid-in-cell case, z is defined as

EP
z=\3/——-—4DET2 * TR

V1 - ¢2
[EVE = £72 — (1/2)cos ™' £}V

(23]

with

5= [24]

It can easily be shown that as the inner and outer spheroidal
surfaces become spherical, the present solution reduces to
the corresponding expression of Tardos er al. (15) for the
Kuwabara model.

Determination of the Local and Overall Sherwood
Numbers for Prolate Spheroids

For small concentrations of 4 in the fluid phase, the molar
flux of 4 is given by

Ny = —D 5V, [25]

where D ;5 is the molecular diffusivity of 4 in B. The normal
component of the diffusive flux at the solid surface is

Darlre Voo | ) .o
a cYri-2 oy _v=0.

‘_NA_V)J':O = (



MASS TRANSFER FROM FLUIDS TO SPHEROIDAL PARTICLES 47

It can also be expressed as

‘NAy)FO = '?é(gA,w — &b [27]
where k is the local mass transfer coefficient. Using &, , =0,

the expression for the local Sherwood number is

kd
Sh(§) =5~
D
E(i - D' D
=0.538 E T Pe'/.  [28]
The overall Sherwood number is defined as
Jeodiy
Sh, = , 29
Doy 129]

where k, is the overall mass transfer coefficient determined
from

i(o(EA.oo - EA.S)S~DS = "'L NAy)y=0d§- [30]
s

In Eq. {30], Sp. is the area of the prolate spheroidal solid
surface (at 7 = 7,),

~ a .
Sps = 2«&%(1 +—~35m"e),
e

and dS is a spheroidal surface clement given by
d§ = -2V = YT = Ddtde

with ¢ the azimuthal angle. Straightforward manipulation
of Eq. [30] leads to

3.383 -
Sh, = 3 /< E(T D j f(HdEPe’, [31a]
Sps
where S, = S,/ d3

By defining the function

E —1)?
\/i—(i———)—fl fiode, 132

Eqg. [31a] can be written as

3.383
Sps

gps(Y: as) =

She = 0.997g,s(y, as)Pe'/3, [31b]

which can be considered as a generalization of the equation

derived by Tardos ef al. (15) for spheres. It is important to
note that Sh, depends not only on v and Pe, but also on the
dimensionless axis ratio of the spheroidal particles, a;. Note
that v can be replaced by the porosity (¢ = | - ). Calculated
values of the function g,.(7y, @3} for several axis ratio and
solid fraction values are given in Table 1.

For practical calculations, the diffusion film thickness can
be estimated from the Nernst approximation

Das

(5 = 33
8({) 70 [33]
and, using dimensionless quantities,
8(5) = Sh(HH™". [34]

The dimensioniess local mass transfer coeflicient, then, is
given simply by

Ko 1
K== = 5ope

[35]

3. THE OBLATE-SPHEROID-IN-CELL CASE

The oblate-shaped-in-cell case {4, > 43) can be treated by
means of the transformation (16)

iT=7=—Ir

[36a]
[36b]

c=—ic=c¢=1c,
where ¢ is the dimensionless semifocal length in the oblate
case and 7 is constant on oblate spherecidal surfaces. The
convective diffusion equation (Eq. [16] in the prolate case)
becomes

‘Z—?‘ = —Pe”'CX(F2+ 1)
2E 2_‘3_ 94
X\/; =25 V_aw]’ (37]
where
V¥ L V3G 38
=~ D 2(?): [ ]

and the bar denotes quantities corresponding to the oblate-
spheroid-in-cell case. Direct application of the transformation
[36a], [36blto the E, D _expressions produces the corre-
sponding expressions for E, D (see Appendix R).

Using the complete analogy of the diffusion equation and
the accompanying boundary conditions for oblate spheroids
to those for prolate spheroids, one can derive analytical
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TABLE 1
Values of g, (v, a3} and g,, (v, a;) for Some Characteristic Values of v and &,

a3

¥ 20 1.5 1.25 1.1 L0 0.9 0.8 0.7 0.6 0.5
0 0.4912 0.5501 0.5862 0.6099 0.626% 0.6432 0.6598 0.6753 0.6885 0.6970
0.0025 0.5360 0.6000 0.6407 0.6676 0.6867 0.7059 0.7255 (.7445 0.7616 0.7747
0.0050 0.5500 0.6164 0.657% 0.6857 0.7050 0.7257 0.7463 0.7665 0.7849 0.7996
0.0075 0.5606 0.6283 0.6707 0.6993 0.7198 0.7405 0.7619 0.7830 0.8025 0.8185
0.01 0.5694 0.6382 0.6815 0.7106 0.7317 0.7529 0.775 (.7968 0.8173 0.8343
0.0125 0.5772 0.6469 0.6909 0.7207 0.7420 0.763% 0.7865 0.8091 0.8303 0.8482
0.015 0.5842 0.6549 0.6995 0.7297 0.7515 0.7738 0.7970 0.8202 0.8422 0.8610
0.0175 0.5908 0.6622 0.7074 0.7381 0.7604 0.7830 0.8007 0.8304 0.8531 0.8728
0.02 0.5969 1.6691 0.7149 0.7460 0.7685 0.7916 0.8157 0.8401 0.8634 0.8838
0.03 0.6186 0.6934 0.7412 0.7738 0.7976 0.8221 0.8479 0.8742 0.8999 09232
0.04 0.6375 0.7145 0.7639 0.7980 0.8230 0.8486 0.8759 0.9039 0.9317 09578
0.05 0.6548 0.7337 0.7848 0.8200 0.8459 0.8727 0.9014 0.9310 0.9608 0.9814
0.06 0.6709 0.7517 0.8042 0.8406 0.8673 0.8953 0.9252 0.9564 0.9881 1.0186
0.07 0.0862 0.7688 0.8226 0.8600 0.8878 0.9167 0.9478 0.98035 1.0139 1.0468
0.08 0.7010 0.7853 0.8404 0.8788 0.9074 0.9373 0.9696 1.0037 1.0389 1.0739
0.09 0.7154 0.8012 0.8576 0.8971 0.9255 0.9573 0.9908 1.0263 1.0633 1.1004
0.1 0.7294 0.8168 0.8744 0.9149 0.9451 0.9768 1.0114 1.0483 1.0870 1.1264
0.11 0.7432 0.8321 0.8909 0.9323 (.9633 0.9959 1.0317 1.0699 1.1104 1.1519
0.12 0.7568 0.8472 0.9072 0.9495 0.9813 1.0149 1.0517 1.0914 1.1335 1.1771
0.13 0.7702 0.8621 0.9233 0.9666 0.9991 1.0336 1.0715 1.1125 1.1563 1.2021
0.14 0.7836 0.8769 0.9392 0.9835 1.0166 10521 1.0912 1.1335 1.1790 1.2270
0.15 0.7969 0.8917 0.9551 1.0003 1.0343 1.0706 1.1108 1.1545 1.2017 1.2518
0.16 0.8102 0.9064 0.9710 1.0170 1.0519 1.0891 1.1303 1.1754 1.2243 1.2767
.17 0.8235 0.9212 0.9869 1.0338 1.0694 1.1075 1.1498 1.1963 1.2469 1.3015
0.18 0.8368 0.9339 1.0027 1.0506 1.0868 1.1259 1.1694 1.2172 1.2696 1.3264
0.19 0.8502 0.9507 1.0187 1.0657 1.1045 1.1444 1.18%0 1.2382 1.2924 1.3515
0.20 0.8636 0.9636 1.0347 1.0844 1.1224 1.1630 1.2087 1.2593 1.3153 1.3767

2 Qur asymptotic results for any axis ratio as y—0 are in excellent agreement with those predicied by using the Happel and Brenner streamfunction
solution {16} for a solid spheroid immersed in an unbounded fluid that approaches in the direction of the axis of symmetry.

expressions for the local concentration of component A, for
the local and overall Sherwood number, and for the film
thickness. For the sake of brevity, we quote here only the
final forms of these expressions:

1 4
C“‘(f)szo exp(—az‘3)dz’, [39]
with
- CEPe  _
= 4ﬁ(?ﬁ+l)yf(§’), 140]
Fe=2 4 1a1{2
sn(ry =053y /B0 D= JO_pos 4y

N R

—4 2
3383 , /e E(f 2+ 1) f Ayt Pe, [42a]

with

5 _
l+e
S, =2r+7%n

€ —-¢

the dimensionless area of the oblate spheroid surface and &
= ¢/ d; the eccentricity of the oblate spheroid. By defining
the function

3.383
Sos

E“E( + 1)?

gos('}/: a3): .[ f(f)d.{- [43]

Eq. [42a] can be written as

Shy = 0.997g..(7y, a3)Pe'’3; [42b]
that is, in & form similar to that of Eq. [ 31b]. Here, too, one
can use e (=1 — y)and ¢ (=V1 — g3) instead of v and a;.
Table | presents numerical values of the function go.{7y, a3)
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plane.

for practical values of the solid fraction and the axis ratio
{a; < 1),

4. RESULTS AND DISCUSSION

Figures 2a, b show the concentration profiles for com-
ponent A at different angular ({) positions on a meridian
plane of prolate- and oblate-spheroid-in-cell systems, We note
that in the prolate-spheroid-in-cell case the concentration
approaches its bulk value at quite small values of y/ 7, and,
hence, the assumption y < 7, used in the model development
is satisfied with good accuracy. The analysis in the oblate-
spheroid-in-cell case seems to be less accurate since the con-
centration approaches its bulk value at y/r, values of the
order of 0.25. Nevertheless, our approximation to the leading
term of the full stream function solution was to second order

Pe = 10,000
Pa = 1,000
y =01
a8, =20
\\
Y
1 —1
0.0 0.5 1.0

{

t=-10
{=-05
{ =00
Pe = 10,000
y =01
a,=05
] 1
0.00  0.05 0.10 0.15  0.20 0.25 0.30 0.35
yiT.

Concentration profiles in the vicinity of adsorbing prolate (a) and oblate {b) spheroids-in-cell at three different angular positions on a meridian

in y and the error involved for the particular Pe values is not
very significant for practical applications.

The ¢-dependence of the local mass transfer coefficient in
the prolate- and oblate-spheroid-in-cell cases is shown in Figs,
3a and b, respectively, for two Pe values. In the prolate case
k decreases monaotonically as the distance from the stagnation
point ( { = 1) increases, tending to zero at the downstream
stagnation point, This observation is in accord with the be-
havior of the diffusion layer thickness shown in the inset.
Note that the diffusion layer has been magnified in the insets
of Figs. 3a, b by a factor of 4 for easier reading. As the Pe
value decreases, the diffusion film becomes thicker and &
increases (dashed curves in Fig. 2). This seemingly strange
behavior of & is caused by the fact that the approach velocity,
ti, has been used to render the mass transfer coefficient di-
mensionless, Eq. [35]; hence, a decrease in the Pe value (for

20
15 e
el —  Pe = 10,000
'z? -+ Pe=1,000
- 10 7 =01
=
a,=0.5
0 1] I 1
-1.0 -0.5 0.0 0.5 1.0

FIG. 3. Profile of the local mass transfer coeflicient and of the diffusion layer (inset) along a meridian of prolate (a) and oblate (b) spheroids in cells.
Variation with the Pe value. (The diffusion film has been magnified by a factor of 4 for clarity.)
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fixed #) must be interpreted as an increase in the D g value
which, in turn, translates to reduced diffusional resistance.

The {-dependence of the mass transfer coefficient in the
oblate-spheroid-in-cell case is significantly different from that
in the prolate-spheroid-in-cell and warrants special attention.
The mass transfer coefficient k has a maxirnum at a position
upstream of but close to the equator ({ = 0). Accordingly,
the diffusion layer thickness attains its minimal value at a
position near the equator and not at the upstream stagnation
point, as it is the case for spherical and prolate spheroidal
geometries. This new and very interesting result is nof in
conflict with the ¢, vs. y/7, graph of Fig. 2b, as one might
think based on the increased slopes in the concentration pro-
files as the stagnation point is approached. It must be stressed
that Fig. 2b shows the dependence of ¢, on 7 values which,
in order to be converted into actual distance, must be mul-
tiplied by a {-dependent factor. Equivalently, although the
slope of the ¢4 curve of Fig. 2b, dc,/dy, is a measure of the
diffusion flux for a given { value, it must bz combined with
a {-dependent quantity to compare fluxes at different { po-
sitions (see Eq. [26] for the corresponding flux expression
in the prolate case).

Figure 4 shows the dependence of the dimensionless
quantity Sh,Pe !/? on the aspect ratio, a3 = ds /4, , for spher-
oids-in-cell. For constant Pe, the overall Sherwood number
decreases monotoenically with increasing aspect ratio. This
indicates that the diffusional resistance in a prolate-spheroid-
in-cell is larger than that in the sphere-in-cell and in any
oblate-spheroid-in-cell of the same porosity. This behavior
can be explained as follows. The characteristic length used
in the Sh, expression is the length of the semiaxis, 4,, which
1s kept constant when the aspect ratio is varied (inset in Fig.
4). Therefore, the behavior of Sh, is identical to that of &,
which, in turn, is the average value of the local mass transfer
coefficient, &( ¢), weighted by the local surface area. Direct
comparison of Figs. 3a and b shows that k( {) is considerably
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FIG. 4, Dependence of the quantity ShyPe ™'/* on the axis ratio, d;/4,,
for oblate and prolate spheroids-in-cell. Variation with the solid fraction, .
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FIG. 5. Dependence of the quantity k,Pe?’? on the axis ratio, 41/4,,
for spheroids-in-cell of the same solid volume and the same porosity. Vari-
ation with the solid fraction, 7.

higher in the oblate case than in the prolate one near the
equatorial zone. The surface area per unit { in this region is
much higher than that near the edges of the spheroid and
the corresponding large %k value weighs heavily in the cal-
culation of the overall transfer coeflicient, k,. On the other
hand, as the solid fraction -y increases, the overall Sherwood
number increases for constant Pe for any value of the aspect
ratio. The reason for this can be traced to the development
of steeper concentration profiles as the envelop decreases in
size, which, in turn, is caused by increased local velocities
and thinner fluid layers. This result is in qualitative accord
with that implied by the expression of Tardos ef al. (15) for
spherical geometry.

Figures 5 and 6 show the effect of the aspect ratio, a; =
d;/d,, on the quantity k,Pe?’? for constant volume and for
constant surface area of the solid spheroid, respectively,
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FIG. 6. Dependence of the quantity k,Pe?* on the axis ratio, d;/d,,
for spheroids-in-cell of the same solid surface area and the same porosity.
Variation with the solid fraction, ¥.
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keeping the solid fraction of the cell at a fixed value. (As the
different cells in these figures have different characteristic
lengths, use of Sh, to measure diffusional limitations in this
part of cur work might prove misleading and has been re-
placed by the use of &, instead.) Figures 5 and 6 show that,
for constant Pe, adsorption of the component 4 from the
fluid stream on the solid surface is facilitated considerably
by shaping the swarm particles as oblate spheroids rather
than as spheres or prolate spheroids. In the constant volume
case in particular, the mass transfer rate is almost doubled
upon changing the aspect ratio from 2 to 1/2 (Fig. 5). Less
drastic, though still significant, is this increase when the sur-
face area of the solid spheroid is kept constant {Fig. 6). In
general, the overall mass transfer coefficient increases as the
aspect ratio a; decreases (as the oblate character increases),
and as the solid volume fraction increases.

5. CONCLUSIONS

The problem of mass transfer from a moving fluid to a
swarm of adsorbing stationary spheroidal particles is solved
using a spheroid-in-cell type of model. The flow field solution
under creeping conditions has been obtained by Dassios et
al. (8) using the stream function formulation, and assuming
uniform approach velocity and vanishing vorticity on the
outer fluid envelope. The leading term of this series expansion
solution was used here to derive a practical, yet sufficiently
accurate, expression for the local velocity in spheroidal co-
ordinates. The convective diffusion equation for a trace
component {constant total concentration, constant diffusion
coefficient) is then solved analytically using the von Mises
transformation and assuming instantaneous adsorption at
the solid surface. Simple analytical expressions are derived
for the local concentration, the local and overall mass transfer
coefficients, the thickness of the concentration layer around
the solid spheroid, and the local and overall Sherwood num-
bers. The diffusion layer in prolate cells is thinnest at the
forward stagnation point and grows thicker as the tail-section
of the cell is approached. Oblate cells behave differently:
the concentration film thickness attains a minimal value
at a point upstream of but close to the equator of the solid
spheroid.

According to the model predictions, oblate-spheroids-in-
cell adsorb faster than spheres-in-cell or prolate-spheroids-
in-cell when exposed to a fluid stream that approaches in
the direction of the axis of symmetry. It was found that
changing the shape of a spheroid-in-cell from prolate to oblate
with the same large-to-small-axis ratio, keeping the solid vol-
ume and the porosity constant, may increase the mass trans-
fer rate by a factor of 2 or more depending on the porosity
of the cell (or, equivalently, on the solid fraction of the
swarm). The corresponding increase of the mass transfer
rate when the surface area is kept constant is less pronounced

but remains considerable for any practical value of swarm
porosity and of particle aspect ratio.

APPENDIX A

Expressions for the constants D, A,, As, and A4 appearing
in the stream function solution (Eqgs. [1], [13]):

1

D =
2G2(T,3)

Ga(7) [G4(7a)+57—?64(7g)] Hy(72)

xdet| Gir,) [Ga(fﬂ) + iﬁ G4(Ta)] Hy(ry) | [A]
Ga7p) 0G4 (75) Hy(71p)
Az = Ga(r)Hi(r) — Gyl Hlr,)
—%64(73)[1{2(7“)— rH3(r)] [A2]
A = Ga(rdHa(r,) ~ Galr)Hi(r) = = (A3]
As = Galr)Gi(7) — Gal(r)Galro)
¥ iﬁ Glr)Galr) ~ 7.Ga(r. [A4]

APPENDIX B

Expressions for the constants A,, A3, A4, D, and £ in the
case of oblate spheroids:

72(572+3)

T PP =2
=|-= +
As [ 8(5T°’+1)(T“+1) 3

- —"57-(5??9 + )73+ 1)1_',,][1 — 7,00t (7,)]
16Ta

—[E(S?z +3)+5(5F§+ 75+ 1)]
4 o

1675

X cot~'(7,) [B.1]

- 1
A3 = A3 = '2' [BZ]

L=30 +%3,)?a(5-?§+3)—’—;£(5?3,+ 72+ 1)

?2
—“) [B.3]

5i 1
+— (573 + D(F5+ )iz~
81‘-5(57”" W73 1)(2 2]
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= Ay 15 . 3A; 1o Sh({) local Sherwood number in the oblate case
E=g m g dmam g Ty AdootT(T) [=ako/ D.as]
L3 Sh, overall Sherwood number in the prolate case
i = = [B.4] Sh, overall Sherwood number in the oblate case
27+ i approach velocity
S ! 1 -5 - Vo v dimensionless fluid velocity
D= (1 +73) [5 (1r+ T")[HZ(T*B)(_G“(T“) v, p-component of v
Uy f-component of v
+ _i G4(l?3)) _ 6G4(l;|3)H'2(l?u)] _ [Gq(l;a) )_/ Var%able deﬁned as )i = I - 1:[, (prolatc Case)
T ¥y variable defined as y = 7 — 1, (oblate case)
57 z dependent variable defined in Eq. [23]
+ -¥—; G4(i?a)][jaH2(?3) — GaliT ) H2(i7,)] z dependent variable defined in Eq. [40]
+ H2(¥a)l:6G4(i:f:ﬁ);a — Go{iTp) Greek Letters
5 o value of # on the inner spheroidal surface
X [—Gk(i" Ta) + 5 GaliT ,e)]” . [B3] g value of » on the outer spheroidal surface
£ ¥ solid volume fraction
5($) diffusion film thickness defined in Eq. [33]
APPENDIX C: NOTATION () dimensionless diffusion film thickness
o . ) A . € porosity
@y, d3  SCmIaxes of the SOl_ld spheroid ) ) ¢ independent variable defined by Fa. {2]
ap, ay dlmf:nsmnlcss semiaxes of the solid spheroid " spheroidal coordinate
b, by semiaxes of the spheroidal envelope g spheroidal coordinate

by, by dimensionless semiaxes of the spheroidal envelope A, A, A, coefficients defined in Dassios et a/. (8)
¢ semtfocal distance of the prolate spheroid

- : : . i fluid viscosity
¢ dimensionless semifocal distance of the prolate dimensionless fluid vicosity
. spheroid _ ) fluid density
¢ se_mlfoc'al distance o_f the obl.ate spheroid p dimensionless fluid density
c dimensionless semifocal distance of the oblate independent variable defined by Eq. [2]
R sphermd. T value of 7 on the inner spheroidal surface
C4 C(_)HceanatIOH of component A T8 value of T on the outer spheroidal surface
Cq dimensionless concentration of component A [= &,/

EA,w ]
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