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The problem of mass transfer from a Newtonian fluid to a swarm of spheroidal 
adsorbers under creeping flow conditions is considered using the spheroid-in-cell model 
to represent the swarm. The flow field within the fluid envelope for the Kuwabara type 
of boundary conditions is obtained from the analytical solution of Dassios et al. (1994). 
The complete convective difision equation is used to describe mass transport within 
the envelope so that moderate and strong di@sional terms can be taken into account. 
A new set of boundary conditions is used that respects mass flux and concentration 
continuity across the outer surface of the cell and maximizes the applicability of the 
spheroid-in-cell model in the convection-to-difision transition regime. The resulting 
elliptic problem in two dimensions is solved numericalb. Results for the upstream and 
downstream concentration profiles reveal that tangential diffusion is very significant and 
should not be neglected for moderate and low Peclet number values. Also, the classical 
Levich-type of formulation, which is theoretically valid for very weak difiswnal terns 
only, can in practice be modified to predict with fair accuracy the overall Shenvood 
number and the adsorption efficiency of prolate and oblate spheroids-in-cell even in 
moderate Peclet number cases. 

Introduction 

Fluid flow and mass transport through swarms of adsorb- 
ing stationary particles are commonly encountered processes 
that bear considerable importance in a large number of in- 
dustrial and scientific applications, such as depth filtration of 
rural and waste water, and noncatalytic fluid-solid reactions. 
Modeling of the fundamental processes associated with these 
applications, such as flow and transport in the vicinity of sin- 
gle adsorbers or in particle packings, is a very old task and 
has been the subject of numerous investigations within a vari- 
ety of scientific disciplines. In most practical cases it can be 
safely assumed that the fluid properties (dynamic viscosity and 
density) are independent of the concentration of the solute. 
This assumption makes it possible to uncouple the flow prob- 
lem from the mass-transport problem. 

The modeling of flow in the vicinity of isolated particles or 
in particle swarms has been considerably facilitated by the 
observation that, in many practical applications, the particles 
of the swarm are sufficiently small and the flow sufficiently 
slow for the creeping flow assumption to be justified. How- 
ever, even for Newtonian fluids, exact analytical solutions for 

the problem of creeping flow through a swarm of particles 
are available only for the case of regular arrangements of 
uniform spherical particles. 

The “ particle-in-cell” concept has contributed significantly 
toward the solution of several flow problems in particle 
swarms. It has led to formulations that model the flow field 
in a particle swarm as the flow field in the region between a 
single solid particle and a surrounding fluid envelope. The 
relative dimensions of the solid particle and the fluid enve- 
lope are adjusted so that the porosity of the configuration 
equals the actual porosity of the particle swarm. Moreover, 
the flow formulation, which involves the flow equation and a 
set of the boundary conditions on the inner and outer sur- 
faces of the cell, is intended to describe the actual flow in the 
actual swarm. Happel (1958) and Kuwabara (1959) presented 
two independently devised “sphere-in-cell” models to address 
the flow problem in packings of spheres. Two major differ- 
ences between these two models can be identified: Happel’s 
model assumes that the outer fluid surface is stationary, 
whereas the solid sphere moves at a constant velocity, and 
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that the shear stress on the outer fluid surface vanishes 
everywhere. Kuwabara’s model, on the other hand, assumes a 
radial velocity distribution on the outer fluid envelope corre- 
sponding to a uniform approach velocity (the solid sphere be- 
ing stationary), and that the vorticity on the outer fluid sur- 
face (rather than the shear stress) vanishes everywhere. De- 
spite these fundamental differences, the two models have 
been proved to yield very similar flow fields over a wide range 
of porosity values (Tien, 1989). Happel (1958) and Kuwabara 
(1959) have also proposed cylinder-in-cell models (using for- 
mulations that were quite analogous to those used in their 
own sphere-in-cell models) that consider particles of cylindri- 
cal, instead of spherical, shape. These models are suitable for 
modeling flow through fibrous mats and arrays of parallel 
fibers. 

Neale and Nader (1974) proposed an important improve- 
ment over the aforementioned models. They considered that 
the basic spherical cell is embedded in an unbounded, con- 
tinuous, homogeneous, and isotropic permeable medium of 
the same porosity and permeability as those of the particle 
swarm. The flow in the permeable medium is described by 
Brinkman’s (1947) equation. A similar employment of 
Brinkman’s equation in cell models is encountered in the work 
by Prasad et al. (1990), which replaces the solid sphere of the 
sphere-in-cell model with a solid sphere surrounded by a 
spherical shell of homogeneous and isotropic porous mate- 
rial. This model combines features of both sphere-in-cell 
models developed by Happel and Kuwabara (the composite 
sphere with the porous shell is stationary, but the shear stress 
on the outer surface of the envelope is assumed to be zero) 
and uses Brinkman’s equation to describe the fluid flow 
through the porous shell. The model is based on the work of 
Masliyah et al. (1987) whose “solid-sphere-with-porous-shell” 
is embedded in an unbounded fluid instead of the fluid enve- 
lope of Prasad et al. 

In all the aforementioned models, particles were assumed 
to be either spherical or cylindrical. The majority of practical 
applications (including fluid-solid reactions, filtration through 
packed beds, and so on), however, involves particles or grains 
that are clearly nonspherical; in fact, their shape is closer to 
spheroidal than to spherical, the deviation typically increas- 
ing with time (cases of fluid-solid reaction with solid or 
gaseous product, deposition of material on the grain surface, 
and so on). Epstein and Masliyah (1972) solved numerically 
the flow field through clusters of spheroids under creeping 
flow conditions, whereas Ammar and Hsieh (1991) produced 
an analytical solution to the Stokes flow inside an oblate 
hemispheroidal cap. Recently, Dassios et al. (1994) proposed 
a complete spheroid-in-cell model, which is quite analogous 
to Kuwabara’s model except for the change in geometry, and 
formulated a series expansion solution to the creeping flow 
equation. 

All these flow-oriented models can be very useful for the 
study of mass-transport processes that usually accompany flow 
through particle swarms. A commonly used approach to 
model mass transport in the vicinity of spherical solid parti- 
cles is the well-known Levich (1962) approximation. For very 
high Peclet number (Pe)  values the diffusion layer has negli- 
gible thickness compared to the radius of the solid particle. 
Under this assumption, Levich calculated the overall Sher- 
wood number (Sh,) for mass transfer from an unbounded 

dilute solution to a moving solid-spherical particle that ad- 
sorbs the solute instantaneously, and obtained the expression 
Sh, = 0.997 Pew. The factor 0.997 depends on the selection 
of the characteristic length (see also Adamczyk et al. (1983) 
and Abramzon and Fishbein (1987)). The Levich solution was 
also obtained independently by Friendlander (1961) and by 
Lochiel and Calderbank (1964). 

Pfeffer and Happel (1964) and Pfeffer (1964) used Happel’s 
model to solve the problem of mass transfer to a sphere in a 
swarm for high Pe values and obtained an expression of the 
form Sh, = f ( y > P e v ,  where f(y) is a simple analytic func- 
tion of the solid volume fraction, y. Tardos et al. (1976) used 
the Happel, Kuwabara and Neale and Nader models and ob- 
tained expressions of the form Sh, = 0.997 g(E)Pe’P, where 
g(E) is a model dependent function of the porosity, E. These 
authors concluded that the Neale and Nader model gives 
somewhat better agreement with the experimental data than 
the other two models. They also derived an analytical expres- 
sion for the removal (or adsorption) efficiency in the case of 
very high Peclet numbers (lo4 5 Pe 5 lo7). 

Not too long ago, Coutelieris et al. (1993) solved analyti- 
cally the problem of mass transfer to a swarm of adsorbing 
spheroidal particles using the spheroid-in-cell model and ob- 
tained expressions for the overall Sherwood number that are 
quite analogous to those of Tardos et al. (1976) for spheres- 
in-cell in the range of high Pe values under creeping flow 
conditions. 

The Levich approximation, however, is not valid for mod- 
erate or low Pe values. The diffusional terms become signifi- 
cant and the thickness of the concentration layer becomes 
comparable to the solid-particle radius. These facts compli- 
cate considerably both the mass-transport equation and the 
boundary conditions of the problem. Brenner (1963) obtained 
an asymptotic solution for a particle of arbitrary shape when 
Pe -+ 0, whereas Masliyah and Epstein (1972) have solved nu- 
merically the mass-transport equation for isolated oblate and 
prolate spheroidal particles for Pe I 70. Sehlin (1969) ob- 
tained expressions for the overall Sherwood number for iso- 
lated spheroids and high Pe numbers of the form Sh, = 0.991 
P e w ,  with K a function of the aspect ratio. Numerical solu- 
tions for the isolated collector problem and for Happel’s 
sphere-in-cell model for colloidal deposition in porous media 
have also been provided by Prieve and Ruckenstein (1974), 
Spielman and Friendlander (19741, and Elimelech and Song 
(1992). In both cases, the Ixvich-type boundary conditions 
have been employed for high and low Pe values. Song and 
Elimelech (1992) showed that the assumption of uniform 
concentration (equal to the bulk value) along the outer sur- 
face of a sphere-in-cell yields unacceptable values (larger than 
unity) for the removal efficiency. To amend this, they pro- 
posed a modified boundary condition on the outer surface of 
the fluid envelope and obtained values for the single collec- 
tor removal efficiency in the correct range (0, 1) even for very 
small Pe values. Their approach, however, involves some not 
entirely satisfactory assumptions that will be discussed in de- 
tail later. 

In the present work, we use the spheroid-in-cell model of 
Dassios et al. (1994) to solve the problem of mass transfer 
from a Newtonian fluid to a swarm of adsorbing solid 
spheroids under creeping flow conditions for high, moderate, 
and low Pe values. A new boundary condition is proposed for 
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Figure 1. (a) Prolate spheroid-in-cell; (b) prolate 
spheroidal coordinates. 

the outer fluid surface that conserves the mass flux and re- 
spects the concentration continuity across the boundary. The 
role of the tangential diffusion terms is examined for the first 
time and quantified over a broad range of Pe values. The 
thickness of the concentration layer is calculated and com- 
pared to the thickness of the fluid envelope for small, moder- 
ate, and large values of the Peclet number. Finally, the limi- 
tations of the cell models that are posed by the possible de- 
velopment of strong mass-transport interaction among neigh- 
boring particles in a swarm are also discussed. 

Mathematical Formulation of the Problem 
Prolate-in-cell case 

Consider a solid stationary prolate spheroid with semiaxes 
i, < i3. The semifocal distance, ti, is defined by 6 
= dm, and the eccentricity by e = 6/&. Consider also 
a larger confocal prolate spheroidal surface with long semi- 
axis g 3  and short semiaxis bl ,  surrounding the solid surface. 
A Newtonian fluid with dynamic viscosity f i  and density fi  is 
assumed to flow past the inner spheroid in the upward direc- 
tion. This flow is caused by a uniform stream moving at a 
velocity of magnitude ii (at the outer boundary) in the posi- 
tive z-direction (Figure la). The approaching fluid is a dilute 
solution of substance A with free stream concentration 
The solute diffuses toward the solid surface where it is ad- 
sorbed instantly. The spheroid-in-cell, which is thus obtained, 
is used to model mass transfer from a dilute solution to a 
swarm of spheroids. The dimensions of the outer spheroidal 
surface are determined so that the solid volume fraction of 
the spheroid-in-cell model is equal to that of the swarm, y.  
We use a1 as the characteristic length, 12 as the characteristic 
velocity, and as the characteristic concentration for ren- 
dering all variables dimensionless. Dimensionless variables 
will be denoted with the same symbols as the corresponding 
dimensional ones, but without the tilde. Assuming now that 
the physical properties of the fluid ( f i  and 5) are inde- 
pendent of the concentration of the solute, cA, the hydrody- 
namical problem becomes uncoupled from the mass-transfer 
problem and can be solved separately. Dassios et al. (1994) 
derived an analytical solution for the creeping flow problem 

using a “semiseparation technique” and expressed the stream 
function as a series expansion. Their solution for the 
Kuwabara model case will be used here. 

The steady-state convective diffusion equation assuming 
constant diffusion coefficient, B, B ,  and total concentration 
can be written as 

where g is the fluid velocity and Pe is the Peclet number of 
the process, defined by 

11 a, 
D A  R 

Pe = 7 ( 2 )  

Using the orthogonal prolate-spheroidal coordinates (7, @>, 
Figure lb, and invoking axial symmetry, Eq. 1 becomes 

where u? = ~ ~ ( 7 ,  0)  and ug = uH(q, 0 )  are the q and 0 com- 
ponents, respectively, of the velocity vector, 0 is the polar 
angle, and 77 is constant on confocal spheroidal surfaces. On 
the inner spheroid q = 7a and on the outer boundary q = 7p. 
These velocity components can be obtained by differentiation 
of the stream function expression reported by Dassios et a]. 
(1994). The leading term of the stream-function solution is 
sufficient to yield the flow field with good accuracy and is 
given by 

where D, A,, A,, A, are 7 and @-dependent coefficients 
defined in Dassios et al. (1994) and reported in Coutelieris et 
al. (1993); and G,(x) and H,, (x)  denote the Gegenbauer 
polynomials of the first and second kind, respectively, of de- 
gree - and order n. The components of the dimensionless 
velocity, g, are obtained by differentiation of I) and use of 
the expressions 

- (5a) -1 
u =  ‘ cu2dsinh2 7 + sin2 0 sinh 7 sin 0 do 

and 

- ’*. (5b) 1 
u, = 

a2Jsinh2 7 -t sin2 0 sinh 7 sin 8 d7 

For high values of Peclet number (Pe 2 1,000) the terms 
containing the first- and second-order 0-derivatives of the 
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concentration on the righthand side of Eq. 3 are negligible 
compared to the corresponding 7-derivatives. Consequently, 
the problem is parabolic in 6 and the appropriate boundary 
conditions are 

C A  = 0 on 7 = 7 m  

CA = 1 as q - + m  

cA is finite on 0 =.rr ( 7 # q m )  

If the curvature and tangential diffusion terms on the right- 
hand side of Eq. 3 are neglected and boundary conditions 6a, 
6b and 6c are used, a Levich-type of formulation for 
spheroids-in-cell obtains that solved analytically by Coute- 
lieris et al. (1993). Below we discuss the boundary conditions 
just given, modify them and suggest new ones that can apply 
to cases with moderate and low Pe. 

Equation 6a expresses instantaneous adsorption on the 
solid surface and remains valid over the entire Pe range; it 
should change only if the adsorption kinetics are modified. 

For high Pe values condition 6b is practically equivalent to 
the condition 

c A = l  on q=qD (6d) 

since the thickness of the diffusion layer is much smaller than 
the thickness of the fluid envelope. This boundary condition, 
however, is not valid for low Pe values and, if used in Hap- 
pel's sphere-in-cell model, it may yield values for the adsorp- 
tion efficiency that are larger than unity. This observation led 
Song and Elimelech (1992) to the formulation of a modified 
boundary condition that is intended to remain valid when dif- 
fusion becomes significant, and that reduces to Eq. 6b for 
high Pe values. This formulation predicts adsorption (or col- 
loidal deposition) efficiency estimates that remain smaller 
than unity even for very low Pe values. For prolate 
spheroids-in-cell this boundary condition can be written as 

and 

where the superscripts + and - denote the outer and the 
inner side of the outer boundary, respectively. Equation 7a 
expresses the flux continuity for substance A on the down- 
stream half of the outer boundary, whereas Eq. 7b is ob- 
tained from 7a, assuming concentration continuity along the 
upstream half of the same boundary. This formulation, how- 
ever, can lead under certain conditions (see below) to a sig- 
nificant discontinuity of the concentration across the down- 
stream half of the outer fluid boundary (cA(77p, 0)  # cA($, 
6 )  for 0 > .rr/2). 

An alternative boundary condition is proposed here that is 
valid over a broad range of Pe values (including moderate 

and relatively low ones). It ensures continuity of the concen- 
tration across the entire outer surface and reduces to Eq. 6d 
for high Pe values. This condition can be written as 

Equation 8a expresses the condition that molecular diffusion 
across the outer boundary is nil, whereas tangential molecu- 
lar diffusion (in addition to convective transport) may be sig- 
nificant. Considering Eq. 7a, it becomes evident that Eq. 8a 
expresses the continuity of the q-component of the molar flux 
across the outer boundary and ensures that the solute con- 
centration is continuous at any point of the outer boundary. 
Equation 8b requires that the thickness of the diffusion layer 
be smaller than that of the fluid envelope at the point of the 
impact. This assumption is expected to be valid over a wide 
range of Pe values, and hence it is applicable to most practi- 
cal cases. 

The boundary condition described by Eq. 6c customarily 
has been used in the literature (see, for example, Levich, 1962; 
Adamczyk et al., 1983) in a variety of equivalent forms. Elim- 
elech and Song (1992) removed the 0-convection term from 
the lefthand side of Eq. 3 along the stagnation line segment 
0 = .rr, qm I 7 I 77p, and neglected the &diffusion terms from 
the righthand side of the same equation. Hence, an ordinary 
differential equation was obtained that was solved numeri- 
cally using cA(q=qp,  0 = r r ) = l  and cA(7=va, O = . r r ) = O .  
The resulting concentration profile was then used as the ini- 
tial condition for a numerical integration with respect to 8. 
In this work, the axial symmetry condition is employed on the 
line of impact, which is written as 

(9) 

and implies nil 8-component of the molar flux, NA, (Prieve 
and Ruckenstein, 1974; Christ and Oliver, 1990). The condi- 
tion 

is valid only for very high Pe values (Levich, 1962; Pfeffer, 
19641, and will be avoided here. The axial symmetry condi- 
tion can also be written on the exit axis segment 

(11) 

Equation 11 is needed when the second-order tangential dif- 
fusion term ( a  'c,/dB '> is retained in the convective diffusion 
equation. A diagram of the BCs used in the full model is 
shown in Figure 2. 

To summarize, our approach of attacking the problem is to 
retain all the convection and diffusion terms in the original 
Eq. 3, and use the boundary conditions 6a, 8a, 8b, 9 and 11. 
The sole assumption incorporated in our model is the exis- 
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Figure 2. BCs used in the full model. 

tence of at least one point within the fluid region (namely, 
the point of impact (7, O)=(qp,  T)), where the concentra- 
tion of A has its bulk value. This assumption seems to be 
inevitable in view of the definition of the grain-in-cell model. 
For very low Pe values the predictions of this model can be 
viewed as normalized values with respect to the concentra- 
tion of A at the point of impact (which, of course, is not 
equal to the bulk concentration in this case). Solution of the 
diffusion-limited problem in the general case of (nonregular) 
particle arrangements can only be accomplished through a 
global model that considers a sufficiently large sample of the 
actual swarm and solves the flow and mass-transport equa- 
tions in the interparticle space. 

The set of Eqs. 3, 6a, 8, 9 and 11 was discretized using 
finite differences on a variable mesh (finer in the impact and 
tail regions and coarser in the equatorial zone). Convergence 
of the numerical techniques was achieved using a 120 X 120 
grid in spheroidal coordinates. In order to quantify the role 
of the tangential diffusion terms, we repeated our calcula- 
tions, having neglected them. In this case, an initial-value, 
two-point boundary-value problem is obtained and Eq. 3 re- 
duces to an ordinary differential equation on the line of im- 
pact 0 = T, I 7 5 qP (u, = 0). Solution of this ode with the 
boundary conditions 6a and 8a provides the concentration 
profile along the upstream stagnation line, which then serves 
as initial condition for the integration of Eq. 3 (without the 
tangential diffusion terms) with respect to 0. Cubic spline 
collocation on finite 7 elements followed by 0-integration 
were used instead of finite differences to obtain fine details 
of the concentration profile wherever needed. For the sake 
of comparing our results with those obtained with the Levich 
approximation (negligible curvature and tangential diffusion 

terms, and bulk concentration value on the outer surface), as 
well as with the boundary condition proposed by Song and 
Elimelech (1992), we have repeated the calculations consider- 
ing each of these cases separately. The analytical solution of 
Coutelieris et al. (1993) was used in the case of the Levich 
formulation. 

Oblate-in-cell case 
The oblate-in-cell case (6, > Z3) can be treated in a similar 

manner using the oblate spheroidal coordinates (7, 0). The 
convective diffusion equation becomes 

where E,, and i& are the 7, and 0 components of the velocity 
vector calculated by Dassios et al. (1994). 

The expressions needed to describe the boundary condi- 
tions are identical to those in the prolate-in-cell case, except 
for the flux-continuity Eq. 7a in the model by Song and Elim- 
elech (1992), which for oblate spheroids becomes 

The numerical solution of the preceding equations and the 
calculation of the concentration profile proceed exactly as in 
the case of the prolate-in-cell. 

Adsorption Efficiency and Overall Sherwood 
Number 
Prolate-in-cell case 

fined as 
The single adsorption efficiency of a grain-in-cell is de- 

rate of adsorption 
rate of upstream influx ' 

A, = 

For spheroids-in-cell we can write 

where 

(14) 

(15) 

In Eq. 15 [ - rSAvl1)= ' 1 ~  is the 7-component of the molar flux 
on the collector surface. It easily can be shown that 
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Equation 16 also gives the removal efficiency of a unit col- 
lector in the case of diffusion and deposition of Brownian 
particles in prolate spheroids-in-cell under the assumption of 
sticking coefficient equal to unity. The value of A, can be 
calculated numerically once the 7-component of the concen- 
tration gradient on the solid surface is known. We have used 
a modified Newton-Cotes method with adjustable step size 
for the evaluation of the integral on the righthand side of Eq. 
16 to cope with the nonuniform mesh employed in the finite- 
difference solution. 

The overall Sherwood number is defined as 

where f ,  is the overall mass-transfer 
Coutelieris et al. (1993)) defined from 

(17) 

coefficient (see, also, 

(18) 

Note that i, is the coefficient of mass transfer from the free 
stream to the solid surface. Combining Eqs. 17 and 18 yields 

1 
Sh, = f (%) sin0 do. (19) 

( I  + "3 sin-' e )  I = la 
a 

Alternatively, the overall Sherwood number can be defined 
as the average value of the local Sherwood number over the 
inner spheroidal surface: 

This definition uses the rate of mass transfer from the outer 
boundary (where the concentration is not, in general, equal 
to the free-stream concentration) to the inner spheroid. In 
the particular case of a very high Pe value, it turns out that 
cA(qp, 0 )  = 1. Then Eq. 19' reduces to Eq. 19 and the two 
definitions lead to identical estimates of Sh,. 

Oblate-in-cell case 

The expression for the adsorption efficiency in the oblate- 
in-cell case is quite analogous to that in the prolate-in-cell 
case, 

whereas the overall Shenvood number based on the mass- 
transfer rate from the free stream to the inner spheroid is 
given by 

where Z ( = E )  is the eccentricity of the oblate spheroid. If 
the mass-transfer rate from the cell boundary to the solid 
surface is used, the following expression obtains: 

Numerical evaluation of these quantities is done using the 
same integration procedure as that followed in the prolate- 
in-cell case (see earlier). 

Results and Discussion 
Concentration profiles at different angular positions for a 

very large Pe value ( = 10,000) are presented in Figure 3a, b 
for prolate and oblate spheroids-in-cell, respectively. The 
solid curves represent the results of the complete model, that 
is, of the formulation that uses the complete convective-diffu- 
sion equation with the new set of boundary conditions 6a, 8, 
9 and 11. The dashed curves were obtained by application of 
the Levich-type formulation, which neglects the curvature and 
tangential diffusion terms and uses the boundary conditions 
6a, b, c that assume fixed concentration (equal to the bulk 
value) on the outer surface (Coutelieris et al., 1993). Note the 
excellent agreement between the two approaches in the im- 
pact region (0  = 7 ~ )  and on the equator ( 0  = r / 2 )  and their 
very small deviation in the exit region ( 0  = 0). Numerical in- 
vestigation of the role of the tangential diffusion and curva- 
ture terms showed that their contribution to the concentra- 
tion profile was negligible as expected for this high Pe value. 
On the contrary, decreasing the Pe value to 1,000 (which is 
still large) causes a significant deviation between the two ap- 
proaches at e = 0, whereas for 8 = ~ r / 2  and 0 = r a satisfac- 
tory agreement is observed (Figure 4). It was found that the 
deviation obtained at this Pe value was due solely to the exis- 
tence of the curvature term in the complete model, whereas 
the tangential diffusion terms proved of no importance. The 
error of the simplified model at e = 0 stems from the fact 
that adsorption and convection are competitive mechanisms 
of solute motion in the downstream part of the cell, render- 
ing the diffusion process significant even for a high Pe value. 
This deviation, however, is confined to the tail region, and 
therefore is expected to have a very small effect on the over- 
all adsorption efficiency (see below). 
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Figure 3. Concentration profiles for very high Peclet number in the vicinity of adsorbing prolate (a) and oblate (b) 
spheroids-in-cell at three different positions on a meridian plane. 
Comparison between the numerical predictions of this work with the analytical solution based on  the Levich approach and produced by 
Coutelieris et al. (1993) for spheroidal geometry. 
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Figure 5 shows the concentration profiles for a moderate 
Pe value (Pe = 10) as obtained with the formulation sug- 
gested in this work (solid curves), with a modified Levich ap- 
proach that retains the curvature term but neglects tangential 
diffusion and uses the fixed concentration boundary condi- 
tions 6a, b, c (dashed curves), and with the Song and Elim- 
elech-type of approximation (dotted curves). Note that in the 
upstream region (0  = a) the modified Levich approach gives 
almost identical results to those of the Song and Elimelech 
approximation. Both of these approaches, however, neglect 
tangential diffusion and consequently overestimate the actual 
concentration value even in the impact region for both pro- 
late (a) and oblate (b) geometries. This deviation becomes 
more pronounced downstream and becomes maximal on the 
exit stagnation line ( 0  = 0). 

0.2 

The significance of the tangential diffusion terms for mod- 
erate Pe values can be quantified directly from Figure 6, 
where concentration profiles obtained with and without the 
employment of these terms and for the same set of boundary 
conditions (those of the complete model) are plotted for pro- 
late (a) and oblate (b) spheroids-in-cell. The role of the tan- 
gential diffusion terms for moderate Pe values proves signifi- 
cant even in the impact region ( 0  = a) and becomes progres- 
sively more pronounced as the exit region ( 0  = 0) is ap- 
proached. The tangential diffusion effect on the concentra- 
tion layer is shown in Figure 7 for prolate (a) and oblate (b) 
spheroids-in-cell. The diffusion layer is assumed to extend 
here to positions where the concentration attains the value 
cA = 0.99. For Pe = 10 it is seen that employment of the tan- 
gential diffusion terms in the complete model results in in- 

_ _  Levtch-type approximation , I  

,! ,, 

- 

Axis Ratio = 0.5 
y = 0.1 
Pe = 1000 

I ,  
I ,  k' ,/,' - Thls work 

Figure 4. Concentration profiles for high Peclet number in the vicinity of adsorbing prolate (a) and oblate (b) 
spheroids-in-cell at three different angular positions. 

1128 May 1995 Vol. 41, No. 5 AIChE Journal 



Axis Ratio = 2.0 

0.4 Pe = 10 

0.2 
Song B Elimelech approximation 

0.2 

This work ( with tangential diffusion ) - 
0.0 0.0 
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 

(77-T.) :  ( 7 7 8 - 7 7 , )  ( ii - V.) ,, ( Vre - ii. 1 
(a) (b) 

Figure 5. Concentration profiles for a moderate Pe value for adsorbing prolate (a) and oblate (b) spheroids-in-cell in 
the upstream ( 8  = n )  and downstream (0 = 0) regions. 

creased layer thickness, which becomes equal to the fluid en- 
velope thickness at (prolate case) or near (oblate case) the 
equator of the cell. Omission of these terms leads to underes- 
timation of the diffusion layer thickness, further decrease of 
which is observed with the Song and Elimelech formulation. 
Nevertheless, all three aforementioned approaches predict 
crossing of the outer boundary by the concentration layer. 
This is not the case, however, when the Levich-type of formu- 
lation is used, which forces the diffusion layer to lie entirely 
within the fluid envelope thanks to the employment of the 
cA = 1 condition at the outer boundary. Note also that in- 
creasing the Pe value to 50 leads to convergence of all four 
approaches examined in this figure to the same layer profile 
at any angular position for both prolate and oblate geome- 
tries. 

The dependence of the overall Shenvood number on the 
Pe value for prolate and oblate spheroids-in-cell is shown in 

Figure 8a and b, respectively. For Pe L 20 the modified Levich 
approach appears capable of predicting the correct Sh, value 
with sufficient accuracy, the curvature and the tangent diffu- 
sion terms being practically unimportant. For Pe < 20, how- 
ever, these terms become significant and the three ap- 
proaches mentioned in this figure predict different Sh, val- 
ues. The modified Levich approximation yields Sh, values 
that are weakly dependent on the Pe value and converge to a 
limiting value as Pe + 0. This value is a function of porosity 
and axis ratio only, and is given by 

for prolate spheroids-in-cell, and by 

1.0 - 

0.8 - 

0.6 - 
4 

I 
u 
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Figure 6. Concentration profiles for a moderate Pe value in the vicinity of an adsorbing prolate (a) and oblate (b) 
spheroid at three angular positions; effect of tangential diffusion. 
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for oblate spheroids-in-cell. Equations 22 and 23 result from 
solving the Laplace equation (retaining only the 7-compo- 
nent of diffusion) in spheroidal coordinates using the Dirich- 
let conditions cA = 0 on the solid surface and cA = 1 on the 
outer surface of the fluid envelope (surfaces of constant 77 

10 
Modified Levich approximation 
Song & Elimelech approximation 

This work (with tangential diffusion ) 
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Figure 8. Dependence of the overall Sherwood number (free-stream based, Eqs. 19 and 21 on the Peclet number for 
prolate (a) and oblate (b) spheroids-in-cell. 
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Figure 9. Test of the outer-boundary condition continuity at the impact point for various axis ratio and Pe values. 

are surfaces of constant concentration in the pure diffusion 
limit, and consequently tangential diffusion is negligible). It is 
evident, though, that this formulation is not valid for low Pe 
values (much less for Pe = 01, and can only serve for the pre- 
diction of Shenvood number values in the isolated collector 
case, that is, for y -+ 0 (qp +m). The other two approaches, 
that is, the one proposed here and the Song and Elimelech 
approximation, predict Sh, values that are considerably lower 
than those obtained by the modified Levich approach and 
become very small as Pe -+ 0. This is an obviously erroneous 
behavior and falls as a mere consequence of the limitation of 
the cell-model concept, which is meaningful only if interac- 
tions among neighboring cells are absent or negligibly small. 
Calculations with the model proposed here reveal that for 
Pe < 5 the condition ( d c A / d q )  = 0 at ( 0  = T, q = qp) is not 
satisfied, and hence the boundary condition posed on the 
surface q = qp becomes discontinuous at the impact point. 

- Axis Ratio = 2.0 
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y = 0.1 

E 

s . 
s 0.01 

prolate case ) L; I 

0.0001 ! / y  / L '  8 ' I I 
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~ 
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c o d  

Figure 10. Ratio of the tangential components of the 
diffusive and convective fluxes along the 
outer boundary surfaces of (a) prolate and 
(b) oblate spheroids-in-cell for three Pe val- 
ues. 

This implication appears only in the low Pe value range and 
is due to the fact that the diffusional terms become suffi- 
ciently strong to force the concentration at the impact point 
(qp, T) to be below the free-stream value. Values of (dc,/dq) 
at the impact point (qp, T) over a broad range of Pe values 
and for several axis ratio values that cover both prolate and 
oblate geometries are given in Figure 9. It is seen that the 
critical Pe value below which the model is no longer valid is 
a rather weak function of the axis ratio, but depends strongly 
on the solid volume fraction of the swarm. Note that the ap- 
plicability of the present formulation extends well into the 
transition regime. Figure 10 provides a further test of the 
model validity. Here, the ratio of the tangential components 
of the diffusive and convective fluxes on the outer boundary 
of prolate (a) and oblate (b) spheroids-in-cell is plotted against 
0 for two Pe values. It is seen that tangential diffusion is 
slow compared to convection along the cell boundary which, 
in combination with our boundary condition (dc,/dq),,, ,,~ = 

0, shows that a slow diffusion region envelopes the cell even 
in the moderate and relatively low Pe value range and pro- 
vides a further justification of our formulation. 

It is very interesting to o'bserve the fair agreement of the 
modified Levich approximation and the present formulation 
regarding the prediction of the cell-envelope-based Sher- 
wood number (Eqs. 19' and 21') even in the moderate and 
low Pe value range (Figure l l a ,  b). This agreement is exclu- 
sively attributed to the increase of the mass-transfer coeffi- 
cient in our model (thanks to its definition based on the outer 
concentration instead of the free-stream one) and not to im- 
proved behavior of the Levich approximation, which remains 
invariant under the change in the Shenvood number defini- 
tion. 

The dependence of the cell-envelope-based Shenvood 
number on the aspect ratio of the inner spheroid is presented 
in Figure 12 for two values of the solid volume fraction and 
two Pe values. In all cases it is noted that the Shenvood 
number increases with decreasing axis ratio: as the length of 
the axis that is normal to the approaching stream increases, 
mass transfer toward the solid spheroid is facilitated. For y 
= O  our results for Pe=l,OOO coincide with the results re- 
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Figure 11. Dependence of the overall Sherwood number (cell-envelope based, Eqs. 19’, 21‘) on the Peclet number 
for prolate (a) and oblate (b) spheroids-in-cell. 

ported by Sehlin (1969) for isolated spheroids and high Pe 
values. 

Figures 13a and 13b present adsorption efficiency results 
for prolate and oblate spheroids-in-cell. The modified Levich 
approach overestimates the adsorption efficiency for Pe < 20 
and, if applied to Pe values lower than - 1.5, adsorption ef- 
ficiency values larger than unity are obtained for both types 
of geometry. On the contrary, both our model and the Song 
and Elimelech approach predict A, values, which remain 
lower than unity even in the low Pe value range. 

Conclusions and Further Remarks 
The problem of convective diffusion through a swarm of 

instantaneously adsorbing spheroidal particles is considered. 
The spheroid-in-cell model is used as a basis for the develop- 

14 - 

8 12- 

10 

a 

ment of a flow and diffusion model. The fluid was assumed 
Newtonian, flowing under creeping conditions with approach 
velocity parallel to the axis of symmetry of the spheroid. The 
boundary conditions for the flow problem were identical to 
those used in Kuwabara’s sphere-in-cell model (at the outer 
boundary, the tangential component of the fluid velocity was 
taken equal to the component of the approach velocity in 
that direction and the vorticity was assumed nil). The creep- 
ing flow problem in prolate and oblate spheroids-in-cell un- 
der the aforementioned conditions has been solved analyti- 
cally by Dassios et al. (1994) who used the stream function 
formulation in spheroidal coordinates, devised a novel 
semiseparation procedure, and obtained a series-expansion 
solution for the stream function. The fluid velocity can be 
calculated in a straightforward manner at any point within 
the fluid envelope. The complete convective diffusion equa- 
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Figure 12. Dependence of the overall Sherwood number (cell-envelope based, Eqs. 19’, 21 ’1 on the axis ratio for two 

values of the solid volume fraction. 
(a) Pe = 1,000; (b) fe = 10. 
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tion in spheroidal coordinates is used here to describe mass 
transport of a dissolved species through the envelope. In its 
full form this equation involves first- and second-derivative 
terms for the concentration and yields a two-point 
boundary-value problem in two dimensions (7 and 0 
spheroidal coordinates). Flux and concentration continuity 
are respected by the outer boundary condition used in this 
work. The concentration at the point of impact (stagnation 
point) is used for the normalization of the interior concentra- 
tion and assumed to equal the concentration of the ap- 
proaching fluid at infinity. Hence, the model proposed here 
is not limited to high Pe values only and can cope with signif- 
icant diffusional terms. The concentration layer is not neces- 
sarily contained within the fluid envelope (as is the case of 
previous simplified models) and can actually cross the outer 
boundary of the cell. The sole restriction that appears in this 
model is the requirement that the concentration layer cannot 
contain the entire cell. This is not a restriction posed by our 
formulation, however, but can be traced to the conceptual 
limitations of the cell model itself. The complete convective 
diffusion equation and the accompanying boundary condi- 
tions are discretized using a variable mesh-finite difference 
scheme and solved over a wide range of Pe values. 

It was found that the assumptions of our model are valid in 
the moderate and high Pe range. The critical Pe value below 
which the model is no longer valid is a strong function of the 
solid-volume fraction of the cell and a weak function of the 
aspect ratio of the solid spheroid. For aspect ratio values be- 
tween 1 and 2 this critical Pe value is of the order of 5. It 
must be emphasized that the model presented in this work 
makes optimal use of the cell model definition and features, 
and breaks down only where the cell concept is invalidated 
(that is, in cases of strong interaction among neighboring 
cells-not particles-of the swarm). Comparison of the model 
predictions with those of the Levich-type approximation re- 
veals that the latter are reliable in the high Pe range ( P e  > 
1,000) only. If the curvature term is retained in the convec- 
tive diffusion equation, however, the Shenvood number pre- 
dictions of this modified Levich formulation become of ac- 
ceptable accuracy down to Pe = 20. This limiting Pe value 

decreases to Pe = 1 if the mass-transfer coefficient (needed 
for the Sh, calculation) is defined using the solute concentra- 
tion drop across the fluid envelope (instead of the concentra- 
tion difference from the free stream to the solid surface). 
The formulation suggested by Song and Elimelech (1992) for 
sphere-in-cell models, on the other hand, was shown to per- 
form quite well in the prolate and oblate spheroidal geome- 
tries. Despite the considerable deviation of the concentration 
profiles obtained with that formulation from those yielded by 
our model, the overall Shenvood number was predicted with 
acceptable accuracy in the moderate Pe value range. How- 
ever, the Song and Elimelech approximation neglects tangen- 
tial diffusion and, consequently, cannot be applied to moder- 
ate or low Pe cases safely. Moreover, this approximation 
makes the assumption that the outer boundary concentration 
is continuous across only the downstream half of the bound- 
ary. This assumption can be justified only in the case of in- 
significant diffusion (that is, when a flowing front advances 
through the cell in the direction parallel to the axis of sym- 
metry). Instead, the formulation presented here preserves the 
concentration and flux continuity across the cell boundaries 
and maximizes the range of applicability of the unit adsorber 
model into the regime of significant diffusional limitations. 
The proposed boundary conditions also have the advantage 
of simplicity. 
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