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Abstract—Particle-in-cell models are useful in the development of simple but reliable analytical
expressions for heat and mass transfer in swarms of particles. Most such models consider spherical
particles. Here the creeping flow through a swarm of spheroidal particles, that move with constant
uniform velocity in the axial direction through an otherwise quiescent Newtonian fluid, is analyzed
with a spheroid-in-cell model. The solid internal spheroid represents a particle of the swarm. The
external spheroid contains the spheroidal particle and the amount of fluid required to match the fluid
volume fraction of the swarm. The boundary conditions on the (conceptual) external spheroidal
surface are similar to those of the sphere-in-cell Happel model [1], namely, nil normal velocity
component and shear stress. The stream function is obtained in series form using the recently
developed method of semiseparation of variables. It turns out that the first term of the series is
sufficient for most engineering applications, so long as the aspect ratio of the spheroids remains within
moderate bounds, say ~1/5 <a;<~5. Analytical expressions for the streamfunction, the velocity
components, the vorticity, the drag force acting on each particle, and the permeability of the swarm
are obtained. Representative results are presented in graph form and they are compared with those
obtained using Kuwabara-type boundary conditions. The Happel formulation is slightly superior
because it leads to a particle-in-cell that is self sufficient in mechanical energy.

1. INTRODUCTION

Flow through a swarm of particles arises in many processes of practical importance, such as
fluidization, sedimentation, flow in packed beds, etc. Determination of the flow field in each
case is important for two reasons. First, the flow field in itself can be used to determine
important engineering quantities, such as the drag force exerted on each particle, the
macroscopic pressure gradient, the permeability of the swarm, etc. Second, the flow field is a
necessary basis for the analysis of a host of transport processes, such as mass transfer with
adsorption or reaction, heat transfer, fine suspended particle motion and deposition, etc. The
flow in many of these processes is creeping, as the Reynolds number is smaller than unity.

In engineering type analyses it is not usually necessary to have a detailed solution of the flow
field over the entire swarm of particles, taking into account the exact positions of the particles
(such solutions are cumbersome to use and unnecessarily detailed for many engineering
applications). Rather, it is sufficient to obtain a relatively simple analytical expression that takes
into account the effects of the neighboring particles on the flow field around a single particle of
the swarm. This, in turn, can be used to develop relatively simple, yet reliable, models for heat
and mass transfer. This rationale has led to the development of particle-in-cell models.

Uchida [2] proposed a cell model for a sedimenting swarm of particles. In his model the
spherical particle is surrounded by a fluid envelope with cubic outer boundary. The cubic shape
of this boundary offers the advantage that it is space filling, but the difference in geometry
between the inner and outer boundaries leads to a three-dimensional flow problem. Uchida
proposed a simplified flow solution which, however, is not in good agreement with data
[3, p. 376]. Brenner [4] developed an accurate solution of creeping flow for this geometry using
a collocation method [3, p. 376].

Happel [1] and Kuwabara [5] proposed cell models in which both particle and outer envelope
are spherical. This formulation has the significant advantage that it leads to an axially

symmetric flow that has a simple analytical solution in closed form, and thus can be used
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readily for heat and mass transfer calculations. On the other hand, it has the disadvantage that
the outer envelope is not space filling, a difficulty which must be dealt with, when one tries to
pass from the single unit cell to the assemblage of particles. (This point will be discussed
further, in the section dealing with the determination of the permeability of the swarm.) The
difference between the Happel and Kuwabara formulations lies in the boundary conditions.
The Happel model assumes that the inner sphere—while at the center—moves with a constant
velocity @ along the axis. Assuming pseudosteady state, the following boundary conditions are
imposed: non-slip flow on the inner sphere, nil radial velocity and nil shear stress on the outer
envelope. The Kuwabara model assumes that the inner sphere is stationary and that fluid
passes through the unit cell. The following boundary conditions are imposed: nil radial and
tangential velocity on the inner sphere, velocity with axial component equal to a constant
approach velocity i on the outer envelope, and nil vorticity on the outer envelope. Both
formulations give essentially the same velocity fields (with the appropriate change of frame of
reference) and approximately equal drag forces, Tien [6]. However, the Happel formulation
has a significant advantage in that it does not require an exchange of mechanical energy
between the cell and the environment. On the contrary, the Kuwabara model requires a small
but discernible exchange of mechanical energy with the environment. The mechanical power
given by the sphere to the fluid is not all consumed by viscous dissipation in the fluid layer.
Rather, a small part is given to the environment, because on the external boundary the product
of the shear stress and the tangential velocity is everywhere negative, except at the two polar
points where it is nil [3, p. 390].

Neale and Nader [7] improved the formulation of Happel and Kuwabara by considering that
the unit cell under consideration is embedded in an unbounded, continuous, homogeneous and
isotropic permeable medium, which has the same permeability with that of the swarm of
spheres. The flow in the exterior permeable medium is governed by Brinkman'’s equation. Flow
continuity, and pressure and shear stress continuity are imposed at the interface between the
fluid layer and the surrounding permeable continuum. An analytical solution in closed form is
obtained for this model, too. Permeabilities predicted by this model are in good agreement with
experimental data over a wide range of porosity values [6]. The Happel and Kuwabara models
also give good agreement, but somewhat less so than the Neale and Nadar model.

Pfeffer and Happel [8] and Pfeffer [9] used Happel’s unit cell to model mass transfer to ar
adsorbing sphere in a swarm, for the case of low Reynolds and high Peclet number. Using the
Levich [10] method for Pe >> 1, they obtained an expression of the form Sh, = 0.997 f(y)Pe'”,
where Sh, is the overall Sherwood number and f(y) is a simple analytical function of the solid
volume fraction y. Tardos er al. [11] obtained similar expressions for the low-Re/high-Pe case,
based on the Kuwabara, and the Neale and Nader models. They concluded that all three unit
cell models give comparable predictions, but that the Neale and Nader version gives somewhat
better agreement with data.

Epstein and Masliyah [12] proposed a useful generalization of the sphere-in-cell model by
considering a spheroid-in-cell model for swarms of spheroidal particles. However, they had to
solve the creeping flow problem numerically (a fact that has impeded the use of this flow model
for heat and mass transfer calculations). The difficulty encountered in this case (as well as in
other cases involving Stokes flow in spheroidal coordinates) is that the governing equation in
terms of the stream function, E* =0, is not separable (whereas it is separable in Cartesian,
cylindrical and spherical coordinates, and R-separable in bispherical coordinates). This
difficulty was resolved recently in Dassios et al. [13] with the introduction of the method of
semiseparation of variables, which was then used to obtain an analytical solution of Stokes flow
in a spheroid-in-cell with Kuwabara-type (see above) boundary conditions. The leading term of
this series solution turns out to be satisfactory for engineering applications so long as the solid
volume fraction y is not too large (say, y <~0.3), and the aspect ratio in the range, say,
0.20 <a3 <35. Couterlieris et al. [14] have already used this flow solution to model mass transfer
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to an adsorbing spheroid in a swarm of similar spheroids, in the case of low-Re/high-Pe. They
obtained for the overall Sherwood number an expression of the form Sh, = 0.997 g(y, a;)Pe'?,
where g(v, a;) is a given function of the solid volume fraction y and the aspect ratio a3, and
give an extensive table of g values.

In the present work the solution to the Stokes flow problem in a spheroid-in-cell with
Happel-type boundary conditions is obtained. The incentive for this is that the Happel-type
boundary conditions are more compatible with the physics of flow in a swarm, since they ensure
that each unit cell is self-sufficient in mechanical energy. In contrast, each unit cell with
Kuwabara-type boundary conditions is required to give work (to an unspecified sink in the
environment) at a small, but not entirely negligible rate, especially for large values of the solid
volume fraction. Analytical expressions for the drag force and the permeability are also
obtained, and the leading term of the solution is used to give results in graph form for wide
ranges of values of the solid volume fraction and the aspect ratio. Both types of spheroids,
prolate and oblate are considered. The corresponding results based on the Kuwabara-type
boundary conditions are also given for comparison. An error in Kuwabara’s expression for the
drag force on a sphere-in-cell is detected and the corrected expression (which turns out to be
much simpler than the erroneous one) is given in Appendix C.

2. FORMULATION OF THE PROBLEM: HAPPEL TYPE BCs

Spheroidal particles can be either prolate or oblate. Since by using a simple transformation,
as we will see later on, one obtains the results for the oblate spheroid from those for the
prolate, we begin by treating the case of prolate spheroids only.

Let the long semiaxis of the solid spheroid be denoted by @5 and the short semiaxis by &,.
The surface of the solid spheroid S; is described by

F+x; x5

~2 + .,2_1, (f],fz, f?) on S.x (1)
ay as

3

where (%,, X,, ¥3) are the dimensional Cartesian coordinates, Fig. 1. Using the short semiaxis a,
as characteristic length, the following dimensionless quantities are defined:

a ¢ +Vai-a s %
a3::—3y a1:1) c=_-= 3 l:+ aii#l, xi:.._l (2)
a1 al a] al

where ¢ is the semifocal length.

Note that a5 is the aspect ratio of the spheroid. Because of the geometry of the particles, it is
more appropriate to introduce prolate spheroidal coordinates (7, 8, ¢), Fig. 2 [15].

The dimensional Cartesian coordinates (x,, x,, x3) are related to the prolate spheroidal ones
(n, 6, ¢) through the equations

x; = ¢ sinh 7 sin 6 cos ¢ O=n<x
X, = ¢ sinh 7 sin 8 sin ¢ O0=8=nm . 3)
x3=ccosh ncos 6 0=¢<2m

The equation describing any spheroidal surface S,, (fixed n) is

x3+x32 x3

cZsinh?n | c2cosh®n L, (x,x2,x3) on S, (4)

The solid surface, S,, in the system of spheroidal coordinates is obtained by setting

1
'q=aEsinh_'E. (5)
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X2

Fig. 1. Solid spheroid in a spheroidal fluid layer (spheroid-in-cell).

According to the spheroid-in-cell model, the solid surface S, is contained in a conceptual
spheroidal surface Sz. Sg is confocal with S, and its size is chosen so that the solid volume
fraction of the cell is equal to that of the swarm. To obtain Sz we set

b
n=pB=sinh™" —Cl (6)

where b, is the short dimensionless semiaxis of the external spheroidal surface Sg (b, = b.la,).
The value of b, is obtained from

by =+Vbi-¢? (7)

where b5 is the long dimensionless semiaxis (b5 = b,/d,), and is determined as follows. Let the
solid volume fraction of the cell be denoted by y (=1 —¢). Now, the volume of the cell is
(47/3)aibib; and the volume of the solid is (47/3)a3a; (recall that a, = 1). Consequently, in
order for the solid volume fraction of the cell to be equal to ¥ we must have

ybibs = a;. (8)
Equations (7) and (8) give
b3 — by — 2 =0 9
Y

which has only one real positive root and is obtained as follows. Let ¢ be the value

2/3 3 1
cﬁ=3(;—;) =;cos[gcos_' y]. (10)
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Fig. 2. Spheroidal coordinates.

If ¢?<c3, then
2 233 2 2 313
b}z[&L (%) _<C_)] +[ﬁ_ (%) _(C_)] . (11a)
2y 2y 3 2y 2y 3

2V3c 1 /3V3 as
b= 3 cos[gcos ]<7)/CT>] (11b)
Substituting b5 in equation (7) from equation (11), one obtains b,, while 8 is obtained from
equation (6).

For reasons of convenience the following independent variables are introduced [3].

If ¢ =3, then

T = cosh 7, {=cos 6. (12)
Then
x1=c\/12——fV1——?cos¢ 1=|1]
x=cVZ—1V1-sin ¢ —1=¢=+1 (13)
X3 =ctl 0<=¢<2m
At this point we also set
ta:cosha=ﬂ=§"= \/l +2C2 (14)
c c

b
Tg = cosh B =—C—3 (15)
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where ¢ is the eccentricity defined by
c
E=—. (16)

Two confocal prolate spheroids are considered: the inner one, S,, at 7=1,, is solid and is
moving with velocity of magnitude i in the positive direction of the xs-axis, inside an otherwise
quiescent fluid spheroidal layer which is confined by the outer spheroid Sg, at 7= 75. Following
the formulation of Happel [1], the velocity component normal to S and the tangential stresses
are assumed to vanish on S;. Assuming that the flow is creeping, (Re =24,pii/fi «< 1), the
equation of motion becomes

E* = EXE*y)=0 17

where (=4 /iia?) is the dimensionless stream function, and the operator E? is given by

Pt @y Zra-ol] (8)

A - ot L

The boundary conditions are:
BC1: v,=(¥-9) on 1=71, (19)
BC2: ve=(R;-80) on 7=r1, (20)
BC3: v, = on T=1, 21)
BC4: I,,=0 on T=71g (22)

where v, and v, are the » and 6 components of the dimensionless velocity v(=1#/i), % and ]
are the unit vectors of the spheroidal coordinates in the n and 8 directions, respectively, X; is
the unit vector of the Cartesian coordinates in the x; direction, and 11, (=ﬂ,,gii /i) is the
dimensionless tangential stress.

Note that for 7= 75 the unit normal vector /i on the external spheroid Sg, the Cartesian
components of which are given by

_ (15V1 = Lcos b, 1,V — sin ¢, V5 — 10)
) Vo, - ’

I

(23)

coincides with the unit vector 4.

Equations (19) and (20) expr_ess the non-slip flow condition. Equation (21) implies that there
is no flow across the boundary of the fluid envelope S;. Equation (22) expresses the assumption
that the tangential stresses vanish on Sg, in accordance with the argument advanced by Happel
[1]. In order to express the BCs in terms of the stream function , we use the relations

1 9
v, = — A (24)
hohy 90
1 ¢
vo=—— 25)
hﬂhd’ 87]
][I.,,g = ZA,,Q (26)

where A is the rate of deformation tensor defined by A = 4[Vv + (Vv)'], and h,, he, hy are the
metric coefficients defined by

ar

h.=
oK

, k=1n,6,¢ (27)
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where r(=F/a,) is the dimensionless position vector. The metric coefficients have the form:

hy=cV© -2
hg=cV1*—{? (28)

hy = NP IV

and the velocity and the shear stress are defined as follows:

Y = 1 A
U TV T R - VR~ 1 a¢ 29
= 1 i
Vo=V S A VT P ot G0)
TN it 5 ) PR SENC SRPPRPN il Ao
M, =n, =2 @ -ni-a-o3k] -0 -w-0 o
The BCs in terms of (7, {) are given below
BC1: %%=c2(1:2—1){ on T=71, (32)
BC2: %=—c2(1—{2)1 on =1, (33)
o7
i}
BC3: :;—i::O on T=71g (34)

12__ §2
2

PN RPN i) BEDIP SN L NN | _ :
[(12 1)31'2 (1 5)8{2} (7 1)61+§(1 g)ag on =15 (35)

BC4:
Because of BC3, BC4 can be written as
i}
BC4: (°-)—= 21—? on T=1g (35)

The corresponding formulation for Kuwabara type boundary conditions is given in Dassios et
al. [13].

3. SOLUTION: HAPPEL-TYPE BCs

The complete solution of equations (17), (18) was obtained in a previous publication [13],
through the introduction of the concept of semiseparability. In terms of the standard spheroidal
parameterization the solution assumes the semiseparable form:

Wt )= Z (8 (D)G(0) + B (DH(D)]. (36)

Here the functions g,(7) and 4,(7) satisfy specified inhomogeneous ODE’s of second order
(see [13]). G,({) and H,({) denote Gegenbauer functions of the first and second kind,
respectively, of degree (—1/2) and of order n. The expression (36) indicates that the equation
of E*y =0 does not accept a complete separation of the 7 and ¢ variables in the usual sense.
Indeed, although 4 is written as a sum of separable solutions, the 7-dependence of the G,({)
eigenfunction does not coincide with the 7-dependence of the H,({) eigenfunction and,
furthermore, the z-functions of order n are linear combinations of Gegenbauer functions of
mixed order (n —2, n, n +2). In addition, individual terms of the series are not solutions of

€S 33-10-6
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equation (17), whereas the complete expansion is [13]. This is exactly what is meant by the
term ‘‘semiseparation”,

The Gegenbauer functions have the following characteristics: G,({) are regular on the
xs-axis; H,({) are singular on the x,-axis; G,(7) are regular in the interior of the spheroid S,;
H,(t) are regular everywhere (since 7> 1), except on the focal segment (where 7=1). As we
demand of our solution to be regular of the x;-axis and in the space between S, and Sg, we use
for the representation of our solution only the terms g,(7)G,({). Furthermore, taking into
account the symmetry of the -field on either side of the equatorial plane ({ =0), we retain
only the even terms of the solution. Thus we obtain

W1 0)= 2 g(DG). (37)
n=2,4--
Now, using the expressions for g,(7) from [13], we obtain

OGO+ S (#0426 2(7) + BrsaHso D)]Ga(D)

n=2,4--

.3 [#42G,(1) + BaHo(D]Ga() + E [CaGu(®) + DLHA(D]GA(E)  (38)

n=24-- n=2,4--
where
‘Sdn+2 2(2 + 1) [A Bn - n+2an+2] (398)
2
%IHLZ 2(2 + 1) [B Bn - n+2an+2] (39b)
with
_ (=)= )et2) )

T on-3)n-1) " @n-1)@2n+1)

Here A,, B,, C, and D, are constants to be determined from the BCs. Using the orthogonality
of the Gegenbauer polynomials and the relation

G,=-P,_\({) n=23,...

and also taking into account that

o

{=-G() =2 (4n+1)Gnii(0)

n=1

[G1(¢) is mot orthogonal to the other members of the family, G,({), n =2}, the BCs can be
written as follows:

BCl: g,(7,) =2c*Gx(7,)

gn(7.)=0 n=273... (41)
BC2:  g3(7,) =2c°Gy(7,)

gn(t)=0 n=23 ... (42)
BC3: g,(15)=0 n=1,2,3 (43)

BC4: (13- g) 2 8(Tp)Guld) = 275 24 g:(76)G. (). (44)

n
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Now, setting ¢?B,/6 = &, the g,(7) functions have the form:

2:(7) = A,G(71) + C,Gy(1) + D Ho(7) + A, Ga(T) + B HA(T) (45a)
gn(T) = ‘ﬂnGn—Z(T) + %an—Z(T) + CnGn(T) + Dan(T) + dn+ZGn+2(T) + %n+2Hn+2(T)y
n=46,.... (45b)

Using the reccurence relations and the Gengebauer functions (Appendix A) to rewrite the BCs
for all even values of n, one obtains a system of linear algebraic equations (Appendix B). Up to
an arbitrary even value n = N this system has (2N + 1) unknowns and 2N equations. The
existence of an extra unknown creates a problem, when one tries to solve the system by
truncating it at n = N.

An analogous problem was also encountered in the case of the spheroid-in-cell with
Kuwabara type boundary conditions [13]. As in that case, we can provide an additional
equation by demanding that the solution for the spheroid-in-cell should tend to the
corresponding solution for the sphere-in-cell (that is, the Happel cell solution) as ¢ — 0, in such
a way that no r” sin @ term appears for infinitesimal values of c¢. This condition fixes the value of
the coefficient of H,(7)G,({) in equation (44) to nil,

B, = 0. (46)
Thus, for n = N we now have a system of 2N equations with 2N unknowns, which can be solved
readily. The only minor difficulty lies in the somewhat complex form of the coefficients of the
unknowns, Appendix B. Once the stream function has been obtained, the velocity components,
the vorticity, the flow rate, the drag force, and the permeability can be determined readily, as
we will see below.

The leading term of the solution, is given by

b1, §) = [ Gi(T) + C,G(1) + A Gu(T) + D Hy(T)]GoA({) (47a)

where &,, C,, &, and D, are constant coefficients the values of which depend on the
geometrical parameters 7, and 7. In any particular instance, these coefficients are obtained
readily by solving the linear system

[ Gy(1a) Gy(1,) Gu(7a) Hy(7.) ]
Gi(ta) Gi(t.) Gi(t) H3(7,) oA,
Gi(1p) Gx(15) Gy(7p) Hy(7g) . G,
, 1 1 , 1, ., WL, Ay

(3-Soton (Do (- Yoo (- | |5
— 215G (7p) —273G3(75) —275Gi(1p) —215H3(1p)

2G, () /(75— 1)
2G,(t)/(T5 - 1)

= . (47b)

0

where the primes and double-primes denote the first and second derivatives of the
corresponding functions, respectively.

The leading term seems to contain most of the important physics of the flow, so long as a,
and vy are not too large, while the higher order terms provide a slight correction. The same
holds true for the first term of the series solution for the case of Kuwabara type BCs, which was
developed in [13]. Comparison of the first term of the analytical solution with results obtained
numerically show that the first term can be used with excellent to very good accuracy in the
domain y < ~0.3 and ~0.20 <a; < ~S5.

In the remainder of the present work we confine our considerations to values of vy and as
sufficiently small to use only the leading term (1, {), equation (47).
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4. VELOCITY COMPONENTS, VORTICITY, AND FLOWRATE

4.1 Happel-type BCs

Substituting ¢(z, {) from equation (47) into equations (29) and (30) we obtain the
following expressions for the velocity components

G

W = et 80 )
G (¢ :

v({2) = CZ\/TZ — 2;2\)/1 — gz 82(1) (49)

where g5(7) is the derivative of g,(7).

The non-vanishing component of the vorticity, ', is obtained readily from the expression

w? = 1 E2p® = [(7* — 1)g5(7) — 2gx(7)] V1 — 52‘ (50)
VP —-1V1- 23V —1(2 - %)

In order to determine the flowrate through the cell, §., (since the outer boundary is
considered impermeable to the fluid), we change the system of reference by switching to a
moving system of coordinates with its origin fixed on the center of the solid spheroid. Then, the
flowrate through the cell can be obtained by integrating the velocity component @, — i on the
ring-shaped equatorial cross section,

by

by
go=—| 2naliv,(r,0)—i]dd = —Znﬁ%aj olvy(r, 0) — 1] dow (51)

| 1
where w (= &/a,) is the dimensionless radial coordinate in the cylindrical system. For £ =0 it is

o =cV1>—1, and equation (51) becomes

3
Ge= —2mﬁac2j tlv (1, 0) — 1] dz. (52)

Using equation (49) and integrating we obtain

qc.= _ﬂﬁfa{[gz(fﬁ) —g2(7.)] — CZ(T%s - 12)}
Now, BC1 and BC3 give g»(7,) =1 and g,(75) = 0. Consequently, we obtain

G® =nbia. (53)

4.2 Kuwabara-type BCs
Using the expression for y?(z, {) developed in Dassios et al. [13], we obtain the following

expression for the flowrate through a spheroid-in-cell with Kuwabara-type boundary
conditions,

G =nazay®(z,, 1) (54)
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with

Y3(1,, 15) = g2(Ts) — 82(15)
= ;—) {Az[Gz(ra) — Gy(13)]

SGA(TB)
S ke (%)

where the coefficients A,, A5, A, are defined as

Gi(2) + Gu(z) ~ 6Gue) | + MlHAT) - Hiz)l]  (59)

Ae = Gu(T)H;(%.) — GilTa)Ha(T) = ;51; G(1p) [ Ho(7) = T.HY(1.)]
= Gi(T)Hy(1.) — GoT)H3(1,) = _%

As= Gi2,)Gi(T,) ~ GH(TIGulz,) + = - GieIGA(5) ~ 7. G(E) (56)
and D is given by

2G2( T5) ————[AGi(1p) + 6A;3Ga(1p) + AsH(1p)) (57)

5. DRAG FORCE

5.1 Happel-type BCs

The drag force exerted on the spheroid in the x; direction, Fp, is obtained conveniently from
the line integral [3]

~ 1
o= nﬁlsz * 9 (E E%/;) ds. (58)

R on

The integration follows a meridian from A to B, Fig. 1; n is measured normal to the meridian,
outwardly, and s is measured along the meridian. In terms of (7, {) we have

- IV = 2 _a______.‘rz—l_ c_ﬁ_{
osNTEIVIEE S cvEraew ST vip % 39

Substituting ¢®(z, ¢) from equation (47) into equation (58) and integrating we obtain
F@ =6ra,jal?(t,, 15) (60)

where the factor L®)(t,,, 15) is given by

- 1Y? (—T, -2 1 1 +1
L(z)(Ta, Tﬁ) - Ta( o ) { Z(Ta) [_2+ (_3+_)1n(1a ):[
3 4 T T, T, 7,— 1

(e T (L (B ] )

o3

where

Tz(T) = “2&%10](1‘) + 10&4464(7:)
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and
T(1) = =24, G (1) + 104,G 4(7). (62)

The drag coefficient is defined as

Cp=—P2— (63)
()5 72
and therefore
24 2d,pi
CP ==L, , (R = ) 64
b < Re (1. TB) ¢ i (64)

As ¢— 0" (in which case the spheroid-in-cell tends to the sphere-in-cell with the same vy
value), the drag force given by equation (58) tends to the corresponding expression of the
Happel {1] model.

5.2 Kuwabara-type BCs

The drag force on the spheroid, in this case, is obtained by inserting ¢®(z, £) from Dassios et
al. [13] into equation (58) and integrating. We obtain

F® =6nra, jial® (z,, 15) (65)
where the factor L'”(z,, 15) is given by

5 1
L%z, 15) = DV {Zr_ﬁ (51— 675+ 1)

2 2
G
87,
The corresponding drag coefficient is given, again, by equation (64). As c— 0+, the drag

force given by equation (65) tends to the correct (see Appendix C) expression for the
Kuwabara sphere-in-cell model.

[157% — 7, — (1574 — 6712 — 1)coth™* r,,]}. (66)

6. PERMEABILITY

6.1 Happel-type BCs

An expression for the permeability of an homogeneous swarm, &, is obtained as follows. We
consider a control volume that has area A normal to the x;-axis (which is the direction of the
main flow), and length 7. The space-averaged velocity is denoted by U and the space-averaged
pressure drop along [ is denoted by AP (P denotes the rotal pressure, i.e. pressure that accounts
for the hydrostatic effect, or pressure at zero-gravity). The control volume contains Ns solid
spheroids, with Ng given by

o~}

3yA
Ny = . 67
ST 4nata, (67)

™

At steady state, a linear momentum balance on the fluid in the control volume gives
AAP — NsFp =0 (68)
From equations (67) and (68) we obtain

AP _ 3y E

= 69
[ 4naza, (69)
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Now, the permeability is defined as
Ui
@AP/Ty

k= (70)
Combining equations (58), (59), (68) and (69) and defining a dimensionless permeability
k(=k/a?) we obtain
2a; U
PR = (71)
9yL i
The effective cross sectional area A. that corresponds to a single spheroid-in-cell is needed to
evaluate the ratio U /ii. Since the spheroidal shape is not space-filling (a shortcoming that is also
shared by the sphere-in-cell models; see discussion in Tien [6]), we proceed as follows. We
assume that the control volume is prism-shaped with cross-sectional area A and length 7, in the
direction of the macroscopic flow. The cross-section can be square or hexagonal, or can have
any other convenient plane-filling shape. Furthermore, the volume of the space-filling unit
prism must be equal to that of the spheroid-in-cell.
At this point, we introduce a constant of proportionality y, so that we have

A= 2ya) I.=2ya,. (72)

This factor is to be determined from the requirement that

- - 4
Equations (72) and (73) give
T 1/3
=l—] . 74
=(2) (74)
The flowrate through a unit prism must be equal to that through a spheroid-in-cell, and thus
o T 2/3 -
G.=A0-42) a0 (75)
6y

Combining equations (53) and (75) we obtain

g = (?)28”1%? (76)
Finally, equation (71) becomes

= (5) 5% )
where L® is given by equation (61).
6.2 Kuwabara-type BCs

In a similar way we obtain
and
13, y(2)
k@ = (%) “;LY(Z) (79)

where Y® and L® are given by equations (55) and (66), respectively.
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7. PROLATE SPHEROID IN AN UNBOUNDED FLUID (REVISITED)

The solution to this problem was obtained by Payne and Pell [16] and, also, Happel and
Brenner [3]. It is of interest to see how that solution is related to the present work. For the sake
of continuity, however, this discussion is given in Appendix C.

8. THE CASE OF THE OBLATE SPHEROID-IN-CELL

8.1 Happel-type BCs

The spheroid is oblate when a; < 1. In this case the semifocal distance is given by
c=Vl1—a3j (80)

whereas b; and b, are obtained from expressions similar to (11) and (7),

el B O BV O @
by =Vbi+ & o

As is shown in Payne and Pell [16] (also, Happel and Brenner [3]), the solution (A, {) for
the oblate spheroid can be obtained by making the transformations

T—iA and c¢— —ic (83)

which is the same as determining ¢ with use of equation (80) instead of (2). The values of A on
the inner spheroid, A,, and the outer spheroid, Ag, are given by

=2 a2 (84)
¢ ¢
From equations (47), (48) and (49) we obtain
YA, {) = [1Gy(id) + CLG(i) + DyHL(iX) + A Gy(iA)]Go({) (85)
2) G\(g) .
V= A v T8 (86)
@ = Gx(§) (87)

S aw T ovis s

where the transformation (7, ¢)— (iA, —i¢) has been made in the expressions for A{, C5, D,
A}, B as well.
The flowrate through the cell, 5, is given again by equation (53). Finally, the drag force F{3
is given by
F@ =6rpaa, LP(A,, Ap) (88)

where

A1) (—AANT1 /1 1
g MDY 4 b
(e As) 3 SRRV WA

A o] -
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with
Ay(Ae) = 2881Gy(A,) + 1043Ga(As)
Ay(Ae) = 241G i(A,) + 105G 4(AL). (90)

The permeability is given by equation (77) again, but here L'® is given by equation (90).

8.2 Kuwabara-type BCs

The conversion is done in a way entirely similar to the one used above, and it is omitted for
the sake of brevity.

9. SAMPLE CALCULATIONS

Sample streamlines and isovorticity lines are shown in Figs 3(a) and (b) for two typical cases:
Fig. 3(a) shows the case of a prolate spheroid (a;=3) with moderate packing density
(y =0.05), whereas Fig. 3(b) shows the case of an oblate spheroid (a; = 1/2) with high packing
density (y =0.3). A comparison of streamlines obtained using Kuwabara-type BCs with
streamlines obtained using Happel-type BCs is given in Fig. 4.

A plot of Re Cf versus v for several prolate spheroid aspect ratio values (a;=1,2,3,4,5) is
given in Fig. 5. As it can be seen, Re C8’ increases slowly with increasing vy, for small y values
(say y <~0.005), and more rapidly at high vy values. For any given value of y, the minimum
value of Re C{y is obtained at a; =1 (sphere-in-cell) and increases as a; increases, that is, as
the deviation from sphericity increases.

A similar plot for several oblate spheroid aspect ratio values (a;=1,1/2,1/3,1/4,1/5) is
given in Fig. 6. Again, Re C§3’ increases with increasing vy, slowly for small y values, and
rapidly for large ones. Here, however, the behavior of the Re C§’ versus y curves is more
complicated than it is in the case of the prolate spheroid. Specifically, for small values of v,
Re C3’ decreases as the deviation from the spherical geometry increases, whereas, for
relatively high values of y, Re C$’ increases as the deviation from the spherical geometry
increases. These observations can be explained as follows.

For small y values the flow around a spheroid is not influenced very much by neighboring
bodies. For fixed radius &,, the surface of a prolate spheroid increases whereas the surface of
an oblate spheroid decreases as the deviation from sphericity increases. Under creeping flow
conditions this difference in surface area causes the observed difference in the drag coefficient
for small y values (see also Happel and Brenner [3, pp. 145-149 and pp. 154-156]. For large y
values the effect of neighboring bodies becomes dominant, and an important difference
between prolate and oblate spheroidal geometry expresses itself. For fixed vy, the equatorial
area available to the flow in a prolate spheroid-in-cell increases with increasing deviation from
sphericity, whereas it decreases in an oblate spheroid-in-cell. It is this feature of the oblate cell
that can cause an increase of Re Cp, despite the reduction in the surface of the solid, provided
that vy is sufficiently large. This behavior of Re C{3’ is also observed in the case of the
spheroid-in-cell model with Kuwabara-type boundary conditions.

It is interesting to determine the magnitude of the drag force exerted on a spheroid-in-cell in
relation to that exerted on a sphere-in-cell under comparable conditions, specifically, for equal
volumes of the inner solids, the same solid volume fraction vy, the same fluid viscosity, and the
same approach velocity in both cells. To this end, we define the ratio

Y N
X == 91
Fo. (91)

where Fp is the drag force on the sphere-in-cell with the same type of BCs on the outer
boundary. The radius of the inner sphere, 4, is given by

a=>0+cH"a,. (92)
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Fig. 3. Sample streamlines and isovorticity lines around: (a) a prolate spheroid (a, = 3), for y = 0.05,
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and (b) an oblate spheroid (a, = 1/2), for y =0.3.
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Fig. 4. Sample streamlines in two identical unit cells with a; =3.0 and y =0.1: (a) Kuwabara-type
BCs; (b) Happel-type BCs.

Happel-type BCs, combining equations (60), (91), (92) and equation (10) from [1] we
iin

X(2) _ 3 (2 _ 3,),1/3 + 375/3 - 272)
H 2(1 +CZ)I/6 (3+2,y5/3)

i L® given by equation (61). Note that 1+ ¢* = 72/(7% — 1).

L3z, 15) (93)

1000
| a=1 2 3 4 5
8
Q
§ 100-L
& =
1 ]
S I
10 T T
0.001 0.01 0.1 0.3

¥

Fig. 5. Plot of Re C’ versus the solid volume fraction y for several prolate spheroid aspect ratio
values.
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Fig. 6. Plot of Re C2 versus the solid volume fraction y for several oblate spheroid aspect ratio
values.

For Kuwabara-type BCs, combining equations (65), (91), (92) and equation (3.18") in
Appendix C, we obtain
G-9"+5y—v)
5(1 + ¢*)ve

X@= L®(z,, 15) (94)
with L® given by equation (66).

The corresponding expressions for the oblate spheroid-in-cell are obtained with the
transformation (7, ¢) — (iA, —ic).

In Fig. 7 calculated values of X® are plotted versus y for several prolate and oblate
spheroids-in-cell. The reason for the difference in the behavior of the curves for the prolate and
oblate geometry was discussed above. We observe that this difference is substantially more
pronounced in the case of Kuwabara-type BCs.

In Fig. 8 a plot of the dimensionless permability k® versus y for several aspect ratio values is
given, for Happel-type BCs. As it can be seen, k@ decreases rapidly with increasing vy, and the
slope increases as 7y increases. For both prolate and oblate geometries, and for any fixed value
of v, k¥ increases monotonically with increasing aspect ratio a;.

A comparison of Re C{’ and k® values obtained with Kuwabara-type BCs with the
corresponding results obtained with Happel-type BCs is given in Figs 9 and 10, respectively.
The drag coefficient calculated with Kuwabara type BCs is systematically higher than that with
Happel type BCs (see also Appendix C). The difference is small (albeit discernible) for small
values of the packing density, y, and increases for large values of vy, because the difference
caused by the different BCs on the outer envelope becomes more pronounced as the density of
the swarm increases.

10. CONCLUSIONS

We present a spheroid-in-cell model with Happel-type boundary conditions, which can be
used as the basis for the analysis of heat and mass transport phenomena in swarms of
spheroidal particles.



Stokes flow in spheroidal particle-in-cell models 1483

1.2

0.7
0.6 . L
0.001 0.01 0.1 0.3
Y
(@
s
1'4 L a3 - 0.2/
p /0.2§

0.4 1 1

0.001 0.01 0.1

¥
(b)
Fig. 7. Plot of the normalized drag force X@ versus the solid volume fraction y for several prolate

and oblate spheroid aspect ratio values. (a) Unit cell with Happel-type BCs; (b) unit cell with
Kuwabara-type BCs.

The equation of motion for creeping flow, E*y =0, is not separable in spheroidal coordinates
in the usual sense, but the method of semiseparation of variables, developed recently by
Dassios et al. [13], is used to obtain the solution.

The solution of the boundary value problem in hand is a series, but, fortunately, the leading
term, ¢¥?(z, £), gives satisfactory approximation for engineering applications, provided that the
solid volume fraction is not too high (say, ¥ <0.03) and the aspect ratio is in a moderate range
(say, ~1/5<a;<~5). (This was established by comparing the first term of the expansion with
the numerical solution.) We obtain expressions for the velocity components v, and vy, the
vorticity w,, the drag force F,, the drag coefficient Cp, the normalized drag force X and the
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Fig. 8. Plot of the dimensionless permeability k® versus the solid volume fraction y for several aspect
ratio values.

dimensionless permeability k. Sample calculations are made and the results are presented in
graphs. All numerical calculations are based on the leading term of the solution Az, {).

Re C¥ increases with increasing vy for prolate as well as oblate spheroids. For small values of
v the rate of increase is relatively small, but it increases with increasing y. For prolate
spheroids, Re C$’ increases as the deviation from sphericity increases for any value of y. The
dependence of Re C on a; is more complex in the case of oblate spheroids. For oblate
spheroids-in-cell, Re C$3’ decreases as the deviation from sphericity increases, for y small,
whereas it increases for y large. This difference in behavior between prolate and oblate

300
//
r Kuwabara type BCs - - - - )
Happel type BCs ~——
100 —
¥ q
(&)
[
«©
10 : :
0.001 0.01 0.1 0.3

v

Fig. 9. Plot of Re C{2’ versus solid volume fraction vy for three typical aspect ratio values. Solid lines:
unit cell with Happel-type BCs. Dotted lines: unit cell with Kuwabara-type BCs.
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Fig. 10. Plot of the dimensionless permeability k> versus solid volume fraction vy for three typical
aspect ratio values. Solid lines: unit cell with Happel-type BCs. Dotted lines: unit cell with
Kuwabara-type BCs.

geometries is due to the interplay of two factors, namely, the surface area on the inner spheroid
and the equatorial area available to the flow. This difference in behavior is also observed in the
case of the normalized drag force, Fig. 7. The dimensionless permeability k decreases rapidly as
v increases for prolate and oblate geometry as well. For all values of v, k increases with as, for
prolate as well as oblate geometries.

The predictions of the spheroid-in-cell model with Kuwabara-type BCs, concerning Re Cp,
and k as functions of y and a;, are in reasonable agreement with those based on the
spheroid-in-cell model with Happel-type BCs, Figs 9 and 10. The latter version of the model,
however, has the important feature that it does not imply exchange of mechanical energy with
the environment. This is due to the Happel boundary condition, according to which the shear
stress vanishes on the outer boundary, and therefore no work is exchanged with the
environment; the rate of mechanical energy provided by the motion of the inner spheroid is
exactly equal to the rate of viscous energy dissipation in the fluid envelope. In this sense, it is
superior to the model with Kuwabara-type BCs, which implies a small, but discernible, rate of
exchange of mechanical energy with the environment. The spheroid-in-cell models can be used
for heat and mass transfer calculations in swarms of spheroids, in a way similar to that in which
the Happel and Kuwabara sphere-in-cell models have been used for swarms of spheres.
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APPENDIX A

Gegenbauer Functions

A presentation of the Gegenbauer functions of the first and second kind and of their most useful properties is given
in Dassios et al. [13]. For reasons of convenience and completeness we list, here, the expressions for G,, G,, G,, H, and
H,,

Gi(x)=—-x (A1)

Gi(r) = (1= 2) (A2)

Gi(x) = (5 = 1)(1 = %) (A3)
Hz(x)=%(1—x2)ln ;‘f}l +3 (A4)
H,,(x)=1-16(5x2—1)(1-x2)1n jf” +22 (1567 - 13) (AS)

where x =tor {.

APPENDIX B

System of Linear Algebraic Equations Arising from the Happel-type Boundary Conditions

For n =2 [with 2, = 0 see equation (46)]

d,G\(1,) + CoGy(1,) + A, Gy(1,) + Dy H(1,) = 2G5 (T, ) /(15— 1) (B1)
A, Gi(1,) + CG)(1,) + #,Gi(7,) + D Hy(1,) =2G\(1,)/(1, - 1) (B2)
o, GI(TH) + CZGZ(Ta) + ~9‘14GA(fﬁ)) + Dsz(fﬁ) =0 (B3)

1 Ay , N ,
b2, + o i+ 5) + Do (B 3t ~ 2n3tep) | + ot - HGums) - 26|

2

€O + Dutae) + Gz + B -t} =0 (B
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For n = 4 [with %, =0, see equation (46)]

AyGo(T,) + HsGe(T,) + BoHo(1,) + CoGy(t,) + D4Hy(1,)=0 (BS)
HaG (1) + Ao G(1,) + BH(1,) + CaGift,) + DyHY(T,) =0 (B6)
J‘1402('5;3) + ﬂoGa(Tg) + %61'16(75) + C404(7B) + D4H4(7;3) =0 (B7)

C,{(rf, —£)G:{(TB) - ZIBG;(‘L'B)] + D,,[(ri, —%)H;’(rﬁ) - ZTBHQ(IG)]
+ dé[(rfg —315)6’(;(13) - ZTﬁGg(rﬁ)] + %[(12 - %)H’g(rﬁ) - 2rﬁHg(rB)]
*3%{64603(13) + BHU1p) + CoGe(tp) + DeHy(15) + AsGi(15) + BeHi(15)}

7 4 ,
= ~a¢4[(r§ - 3—5>G;(TB) - 2rscg(rE)J +5 [&4, G(t5) + C>G3(15) + Dy HY(75) + M4G4(15)]. (B8)

Forn=6,8 10,...
A Gna(Ta) + BuHy o(T0) + 5,236 (1) + By 2H, (1) + CoGo(1,) + D,H(7,) = 0 (B9)
HGro(Ta) + BHy_o12) + 4,156 2(8,) + By H)o(1,) + CGU(T,) + D H(1,) = 0 (B10)
8, G—2(1p) + BH,, 2(75) + 5,136 o(T) + By i2Hy 1 o(Tg) + CuGo(T) + DoHy(75) = 0 (B11)

Cal(Th = ¥a)G(Te) = 225G, (1a)] + D,l(75 — ¥,)Hi(15) 21H,(1)]
+ (T = V)Gl al16) ~ 205G a(Tp)] + B, (15 - Y)Hy12(75) — 225 H,, 4 2(75))
" sl An 2G(Tp) + B2 H,o(T5) + C 26 1p) + Dy s H,y o o(15) + o, 4G o) + BroraH, 1 a(T4)}
= (75~ 7)Grr-o(%e) ~ 225G o( )] — BLI(Th ~ v, H o(T5) — 215H, (1))

+ Bn+2[~94n—26n—4(73) + B, o H,_y(15) + C, »G, ATg) + D, H,_5(15) + A,G(15) + B,H,(15)] (B12)

where
2n%-2n -3

Yn = n+1)(2n +3)

(n—1)n

B2 = o 55 n - 3)

(n+1)n
2n+1)2n+3)°

Xy 2=

(When the expansion is truncated at a value n = N =2, the corresponding expression in curly brackets, {-}, which is
generated by higher order terms of the expansion, is set equal to nil to effect closure.)

ES 33-10-4
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APPENDIX C

Corrected Equations of the Kuwabara (1959) Sphere-in-Cell Model (The Notation and Equation
Numbers of the Original are Retained)

Kuwabara derived an expression for the drag force X, [ref. his equation (3.16) and (3.18)] by calculating the total
rate of viscous dissipation of energy, equation (3.15), and setting this equal to XU. In the framework of his formulation,
this is not correct. The mechanical power given by the sphere to the fluid, XU, is not all consumed by viscous
dissipation in the fluid layer; a small, but non-negligible, part is given to the external boundary. This is easy to see, since
the product [—17,4(b, O)ve(b, 0)], where 1,, is the (r, 8) component of the deviatoric stress tensor, is everywhere
positive, except on the two polar points where it is nil (see also Happel and Brener 3, p. 390]). When this is taken into
account properly, the correct expression for the drag force and the drag coefficient are obtained from equations (3.16)
and (3.17) by setting

L=g=——— (£-%) (318)

K 9 o L b
L-cg+8 -3¢

The same expression is obtained by substituting the stream function from equations (3.8)-(3.9) into equation (56) (of
the present work) and integrating. Equation (3.18') is also in complete agreement with the results obtained from the
solution for the spheroid-in-cell, when the latter tends to become a sphere-in-cell [equation (63) and Fig. 4 of the
present work, as a;— 1]. It is interesting to note that the correct expression, {3.18'), is much simpler than the erroneous
one, (3.18).

This error has remained unreported for a long time (even though Tardos er al. [11] use the correct expression,
without commenting on it). One reason may be that the relative magnitute of the difference in the value of L resulting
from the error is small (albeit discernible).

The following corrected equations should also be used instead of those appearing in the original publication.

1 1,
C=‘§U(1+EI )/K (3.9¢)
3
D= 20 U/(PK) (3.9d)
X = 6nualL({). (3.16)

APPENDIX D

Prolate Spheroid in an Unbounded Fluid (Revisited)

Let us consider the case of a stationary prolate spheroid in an unbounded fluid that flows in the direction of the axis
with a uniform approach velocity #%;. This system is governed by the equations that govern the flow in a
spheroid-in-cell, with Kuwabara type BCs, if we let b, — =, keeping c constant, in which case S, becomes a sphere of
infinite radius, while S, remains unchanged. The two boundary conditions on S are then to be replaced by the limit

W, )= - DGY() as 1o (D1)

This implies that from the general solution, equation (85) in Dassios et al. [13], we should keep only the terms that
behave as ¢?1° + 0(1?) as t — =, that is

W(T, ) = T2 ((D)GAE) + T3 2(1)GH({) (D2)
with
B, 2A - - H,
To0(7) =2 cGi(D) + 2—52 c*Gy(1) + C2*Gy(7) + D, ~C(T) (D3)
__BiH() A,
I2(7) 175 &2 175 ¢ Gy(7) (D4)
where A,, B,, 62, D,, 24, and B, are constants to be determined from the boundary conditions.
Rearranging we obtain
B, 24; 4 A2 H7<r)] [ By Hi7) Ay 4 ]
o)== +- 2 , —=—= |G, N == .
w0 = [ 260+ L2 Gy + GG + 0,0y 4 ] - B DA im0 s)

At this point we have six unknowns, but only three BCs (two on the spheroid and one at infinity), which means that the
usual conditions do not suffice to formulate a well-posed problem.

To proceed, we impose a geometrical limit condition, by requiring that the solution should tend to the Stokes
solution, namely

Ys(r, ) = (Ar~ '+ Br + Cr¥)sin® 6, (D6)
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as ¢— 0+, that is, as the spheroid tends to become a sphere. Taking in account the asymptotic behavior of the
Gegenbauer functions, in the limit as ¢ — 0+,

5
cGi(T)—> —r, Gy > — %rz, AGyt)— ~ §r4

1 1 1 21
zﬂz(f)—’gv C_gHa(T)—’ﬁrz
and renaming the constants of the non-vanishing terms as follows
_ D B
=C,c2 =22 =22
Ay = Cyct, B, ¢’ 4, 6
we obtain
(1, £) = [A,Gy(1) + By Hy(1) + A, G(1)]GA{). (D7)
Substituting into the BCs y(7,,, {) =0 and ay(r,, ¢)/9t =0, and into the limiting condition, equation (D1), we obtain
PR (D8)
Gy(1.) — 7,G5(1,)
B, = 2c22——"‘,—"— (D9
=2 H e~ Ys,) )
1
N e (D10)
! Hy(1,) — 1,H3(t,)
Equations (D7)-(D10) finally give
1, 5 > [ [(rf,+1)/(rz—1)]coth"1—[1'/(1'2—1)] ]
== — 1)1~ - 2 D11
YO = = = O (T i Deoth T2, S (e /(2 1)] (B1

which is the solution proposed by Payne and Pell [15], and by Happel and Brenner [3, pp. 154-156].

The solution for the case when the spheroid translates with velocity (—#3%;), while the fluid at infinity rests, is
obtained by subtracting ... = 1/2¢*(* - 1)(1 — ¢?) from (D11). Here, .. denotes the stream function that corresponds
to the uniform velocity field v = %,. Substituting ¢ from equation (D11) into equation (58) and integrating gives the
following expression for the drag force,

Fy= 6”511-1’7L(;](Ta) (D12)
with
Lo (7 ):é[(rzwtl)coth"r -7, (D13)
Gi\ta 3\/? a a a

which is the same with the expression obtained by Payne and Pell [16], and by Happel and Brenner (3], using the limit
method developed by Payne and Pell.

It is interesting to note that equation (D5) is not an exact solution of equation (17). It should be emphasized that
exact solutions of (17) are obtained either in the form of a complete expansion, equation (36), or as closed-form
solutions (generalized eigenfunctions) of which equation (D5) is not one, Dassios et al. [13]. However, elimination of
the terms containing G,(t) and H,(t) based on the geometrical limit condition leads “fortuitously” to the exact
solution.

Here we should discuss the approach used by Happel and Brenner, because they, too, arrived at (D5) by assuming a
solution in the form g(7)G,(¢). Direct substitution of this product into (17) led to a fourth order differential equation
for g(7) that involved the variable ¢ in non-separable form. Two linearly independent solutions for g(7), namely G,(r)
and H,(7) were readily derived from E%y = 0. Happel and Brenner managed to obtain a third one by independently
setting two complementary parts of the expression for E4y = 0 equal to nil and observing that there existed a common
solution, namely G,(1). These three solutions were sufficient to satisfy the three boundary conditions (two on the
boundary, one at infinity) of the single spheroid problem. In view of the special technique used to derive their solution,
Happel and Brenner carefully stated that equation (D11) is “a possible form for the stream function”. The present
analysis helps to clarify this point. The same technique could not be applied in the spheroid-in-cell problem, since the
two finite boundaries require four linearly independent solutions and, as we have proved, (see also Dassios et al. [13])
there do not exist four linearly independent separable solutions with a {-dependence expressed via the same
Gegenbauer function.

NOMENCLATURE

A cross sectional area of the control solid spheroid, respectively (a3
_ volume equals the aspect ratio of the
A cross sectional of the space-filling solid spheroid)

unit prism that corresponds to a as, a, major semiaxis and minor semiaxis

spheroid-in-cell (radius) of the solid spheroid,
A, constants defined by equation respectively

(3%a) B, constants defined by equation
A, constants, equation (39a) (39b)

as, a, dimensionless major semiaxis and B, constants, equation (39b)

minor semiaxis (radius) of the ba, b, dimensionless major semiaxis and



1490

G.(x)

8a(7)
H,(x)

h, (1)
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L (7, 15)
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minor semiaxis (radius) of the
external spheroid, respectively

major semiaxis and minor semiaxis
(radius) of the external spher-
oid, respectively

friction factor; value of Cp, based
on y@

constants, equation (38)

dimensionless and dimensional se-
mifocal length of a prolate
spheroid, respectively

critical value of ¢, equation (10)

coefficient, given by equation (57)

constants, equation (38)

drag force exerted on the solid
spheroid (in the direction of the
x5-axis); value of F based on
el

Gegenbauer function of the first
kind, of degree (—1/2) and of
order n

function appearing in the complete
solution, equation (36)

Gegenbauer function of the sec-
ond kind, of degree (—1/2) and
of order n

function appearing in the complete
solution, equation (38)

permeability

dimensionless permeability

dimensionless permeability, based
on 'JJ(Z)

function defined by equation (61),
or equation (66)

length of the control volume (in
the macroscopic flow direction)

length of the space-filling unit
prism that corresponds to a
spheroid-in-cell

number of solid spheroids con-
tained in the control volume
Al

coordinate measured normal to
the external spheroid, S,
outwardly

unit vector normal on the external
spheroid, S,

total pressure

Legendre function of the first
kind, of degree 0 and of order n

Peclet number

Legendre function of the first
kind, of degree 0 and of order n

Legendre function of the second
kind, of degree 0 and of order n

flowrate through a spheroid-in-
cell; value of §. based on ¢’

Reynolds number

surface of the internal (solid)
spheroid

surface of the external spheroid

arc length measured along a meri-
dian of §,

superficial velocity through the
swarm

approach velocity, & is related to
U through equation (76), or
equation (78)

(2) ,(2)
v,V

» Ve
X, xX@

2) 3@
XH ’XK

Xy X2: X3

£y %, 8

n

B,
AP

o

72

@3

Aau As, Ay

Ax(A, ) Az(AL)

=
= [ TR

ot

Ty(t.,), TH(7.)

dimensionless velocity, and velo-
city, respectively

7 and 6 components of the dimen-
sionless velocity v

values of v, and v, based on ¢®

normalized drag force, equation
(91); value of X based on W

value of X‘® for Happel-type and
Kuwabara-type BCs,
respectively

dimensionless rectilinear coordin-
ates, Fig. 1

unit vectors of the system of coor-
dinates (x,, x,, x3)

Greek letters

parameter defined by equation (5)

number given by equation (40)

parameter defined by equation (6)

number given by equation (40)

solid volume fraction

pressure drop along the control
volume (P = total pressure)

eccentricity of the solid spheroid

spheroidal coordinate, defined by
equation (12)

spheroidal coordinate, Fig. 2

unit vector in the n-direction

spheroidal coordinate, Fig. 2

coefficients, given by equation (56)

combinations of Gegenbauer func-
tions for oblate spheroid and of
their derivatives respectively,
equation (89)

oblate spheroidal coordinate,
equation (83)

dynamic viscosity

eccentricity of the solid spheroid,
equation (16)

dimensionless and dimensional
stress tensor

fluid density

combinations of Gregenbauer func-
tions and of their derivatives,
respectively, equation (62)

prolate spheroidal coordinate, de-
fined by equation (12)

parameters, defined by equations
(15), (16)

dimensionless and dimensional ra-
dial (cylindrical) coordinate,
respectively

$-component of the dimensionless
vorticity vector

spheroidal coordinate, Fig. 2

unit vector in the ¢-direction

proportionality factor, defined by
equation (72)

opposite value of #, Figs 3 and 4

dimensionless stream function

stream function

leading term of ¢

radial cylindrical coordinate,
equation (59)

¢-component of the vorticity,
equation (50)



