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1. INTRODUCTION

Analytical spheroid-in-cell flow models, designed to treat the
case of transport in swarms of (prolate or oblate) spheroidal
particles appeared relatively recently. Epstein and Masliyah
(1972) were the first to propose a spheroid-in-cell model, but
they solved the flow problem numerically, a fact that
discouraged the use of that flow model for heat and
mass transfer calculations. The solution of Stokes flow
around a spheroidal particle immersed in a confocal
spheroidal envelope of fluid, with Kuwabara-type and with
Happel-type boundary conditions, was obtained in the form
of a semiseparable expansion in Dassios et al. (1994) and
Dassios et al. (1995), respectively. One of the most interesting
and intriguing properties of this solution concerns the rapid
convergence of the semiseparable expansion. It is shown here
that the leading term of the expansion for each of the two
aforementioned formulations is an excellent analytical ap-
proximation to the corresponding exact solution (obtained
numerically) over a fairly broad range of the geometrical
parameters. For axis ratio in the range [4, 5] and solid
volume fraction in the range [0, 0.3], the relative error in the
value of the streamfunction given by the leading term is
smaller than 1%, and the relative error in the value of the
friction coefficient is smaller than 2-3%. This validation of
the leading term sets the ground for its use to develop simple,
yet reliable, models of heat and mass transfer in swarms of
spheroidal particles as in Coutelieris et al. (1993, 1995).

2. STOKES FLOW IN SPHEROIDAL PARTICLE-IN-CELL
MODELS

Dassios et al. (1994) obtained the solution of axisymmetric
Stokes flow in a spheroidal particle-in-cell with Kuwabara-
type boundary conditions. The solid particle is a spheroid
with equatorial radius a; = 1, semiaxis along the axis of
symmetry equal to a;, and semifocal length c. [All variables
are in dimensionless form, unless specified otherwise, and in
accordance with the notation in Dassios et al. (1994).] The
surface of the particle is spheroidal and is specified by
T = 1, = a/c. The outer boundary of the unit cell is a con-
ceptual spheroidal surface, confocal with the inner one, and
is specified by t = 15 = b;/c, where by takes the value re-
quired to make the solid volume fraction of the unit cell
equal to that of the swarm. The Kuwabara-type boundary
conditions are as follows. On the inner boundary (z = 7,)
both velocity components, v, and v, vanish. On the outer
boundary (r = 14) the axial velocity component is equal to
the approach velocity (unity) and the vorticity vanishes.

More recently, Dassios et al. (1995) obtained the solution
of Stokes flow in a spheroidal particle-in-cell with Happel-
type boundary conditions. According to this formulation the
BCs are as follows. On the inner boundary, the two velocity
components are such that the velocity vector coincides with
the velocity of translation of the particle along the axis of
symmetry. (The velocity of translation has magnitude equal
to unity). On the outer boundary, the velocity component
normal to the boundary and the shear stress vanish. This
formulation has the advantage that it renders the unit cell
self-sufficient in mechanical energy, as opposed to the unit-
cell in the Kuwabara-type formulation.

Both of the above applications result in solutions of the
form

Y= Y g0G() 0]

n=2,4,..
The leading term of the expansion is denoted by
v 2,0 = 92(1) G,() )
so that
w(t, {) = ¥z, () + {Correction Term} 3)
with
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n=4,

{Correction Term} =

o

The expression for g,(r) depends on the type of BCs used.

2.1. Leading term for Happel-type BCs
In this case

92(7) = 1 G (1) + C2G,(t) + A,Ga(t) + D2 Hy(r)  (5)

where &« ,, C,, o, and D, are constant coefficients the values
of which depend on the geometrical parameters 7, and 7. In
any particular instance, these coefficients are obtained
readily by solving the linear system
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where the primes and double-primes denote the first and
second derivatives of the corresponding functions, respec-
tively.

2.2. Leading term for Kuwabara-type BCs
In this case

) l AG(HA(SG‘(T”G(HG(f
)= —— 7
g2 DEZ 1) 20, 3\61(%] 1T 4T)
+ /\4H2(Tijl (N
where
1 ;
D= m[AZGZ(r,,) +6A;Ga(ty) + AgHylzp)]  (7a)
and
, , 5
Az = Galt)Hi(1,) — Gilt,)H,(1,) — —Galtg) [H,(1,)
T8
= Hj(1,)] (7b)
A3 = Gt Ha (1) - Galt) Hy(r,) = — % {7¢)
, , 5
As = G2(t)Galty) — GH(1)Galt2) + — Galts) [Ga(Ty)
Tp
= 1G] (7d)

Equation (7) corresponds to the original Kuwabara formula-
tion in which the particle is stationary and the fluid flows
past it with an approach velocity @x;. The solution for the
case in which the particle translates with velocity — &%,
while the fluid has no motion other than that caused by the
particle itself, is obtained by subtracting (z2 — 1)/(z2 — 1)
from the RHS of eq. (7). taking into account that ¢, =
[(t* = DAxZ — 1)] G,({) is the expression for the stream
function of the uniform flow field v = %5. This origin shift
produces the Kuwabara formulation that corresponds to
that of Happel. (Of course, the difference in the BCs on the
outer envelope—vanishing vorticity vs vanishing shear
stress—remains.)

2.3. Higher-order terms

Analytical formulae for the calculation of the higher-order
terms of the expansion (1) are given in Dassios et al. (1994,
1995), for Kuwabara-type and Happel-type BCs, respec-
tively. However, the manipulations become rapidly very
involved, and calculation of the full correction term (beyond
the first three or four terms) in this manner would not be cost
effective. Below, we determine the magnitude of the correc-
tion term for various values of the geometrical parameters by
comparing the “exact” solution, obtained numerically, with
the leading term of the analytical solution.

(6)

3. NUMERICAL YALIDATION OF THE LEADING TERM

A numerical solution of Stokes flow in a spheroidal par-
ticle-in-cell model with both types of BCs (Happel and
Kuwabara) was first reported by Epstein and Masliyah
(1972). However, those results were not presented in a form
that would allow us a direct comparison with the analytical
results. For this reason, we developed our own numerical
algorithm, using a finite difference scheme in the (r, {) do-
main. The results obtained with this algorithm are regarded
here as the “exact” solution. Of course, every test required
concerning the convergence and accuracy of the numerical
solution has been made, and passed.

Figure 1 shows typical streamlines around a prolate sphe-
roid with relatively large aspect ratio, a; = 5, (which makes
this case demanding) in a cell that corresponds to a sizeable
solid volume fraction value, y = 0.1. Some typical “exact”
results are shown with circles, while the solid lines give the
corresponding results from the leading term of the analytical
solution, ¥®. The agreement is very good to excellent,
almost everywhere. (For a quantitative examination of the
error see the discussion concerning Tables 1 and 2, below.)
Some discernible discrepancy occurs only near the stagna-
tion regions, especially for Kuwabara-type BCs. The agree-
ment in the case of Happel-type BCs is better.

Figure 2 is similar to Fig. 1, but here the spheroidal
particle is oblate, with axis ratio a; = 3, and the solid volume
fraction is large, y = 0.3. The large value of y makes this case
demanding. Even so, the leading term in the case of Happel-
type BCs is, again, in excellent agreement with the exact
solution. The leading term in the case of Kuwabara-type BCs
deviates discernibly from the exact solution, especially near
the stagnation region, but it could still be useful for some-
what rough estimations.

Figure 3 gives Re Cp as a function of the solid volume
fraction y for selected prolate and oblate spheroids, for
Happel-type and Kuwabara-type BCs. The lines are ob-
tained from the leading term, y'?, and the circles (open or
full) are results from the numerical solution. The agreement
is excellent over a broad range of the parameter values. The
following remarks are pertinent at this point. The Reynolds
number, Re, and the friction coefficient, Cp, are defined as
C, = _ B ®)

it 7 mahpa’)

where £, is the (dimensional) drag force. The drag force was
obtained in closed analytical form from the leading term ¢'?,
through a simple line integration. The “exact” results were
obtained by the corresponding numerical line integration,
using the numerically obtained values of .

Up to this point, we have compared results obtained from
the leading term of the expansion, ¥?, with the “exact”
results. The differences can be attributed to the correction
term, eq. (3). As it turns out, the leading term contains most
of the important physics and gives very good to excellent
predictions, so long as the geometrical parameters remain in
a moderate range, say £ < a; < 5, and 0 <y £ 0.3, or even

2a, pa
Re:‘_p
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Fig. 1. Streamlines around a prolate spheroid-in-cell with  Fig. 2. Streamlines around an oblate spheroid-in-cell with
axis ratio 5 and solid volume fraction 0.1, for both types of  axis ratio 0.5 and solid volume fraction 0.3. The results from
BCs. The results from the leading term of the analytical the leading term of the analytical solution are shown with
solution are shown with continuous curves, whereas those  continuous curves, whereas those from the numerical solu-
from the numerical solution are shown with small circles. tion are shown with small circles.

Table 1. Percent mean relative error in the value of the streamfunction ¥, using one (n = 2), two (n = 4) and
three (n = 6) terms of the expansion (1)

a; y ERR? ERR{ ERR{ ERR{ ERR{ ERR(®
0.2 0.1 0.71 0.64 0.56 0.62 0.54 0.50
0.5 0.1 0.54 0.50 0.43 0.48 041 0.37
0.8 0.1 40x1072  20%x107%  13x10°® 33x107% 1073 88x107*
1.0001 0.1 1LOx107'% 10x107'* 10x107'% 10x10"** 10x107'* 10x10"'4
1 0.1 0 0 0 0 0 0
1.25 0.1 201072 1.3x107°  99x107*  11x107% 86x10"* 60x107*
20 0.1 0.41 0.39 0.35 0.38 0.33 0.29
5.0 0.1 0.63 0.57 0.51 0.59 0.52 0.48
2.0 0.0001 50x107%  33x107%  1.6x107% 40x107° 32x10"° 107°
2.0 0.001 10x107%  97x10"* 82x107% 85x107* 76x10™* 63x107*
2.0 0.01 0.29 023 0.19 0.25 0.19 0.15
20 0.1 0.41 0.39 0.35 0.38 0.33 0.29
20 0.3 0.46 0.42 0.38 041 0.39 0.36

Note: ERRY = 100((1/¢ )|, — ¥\ |>, n = 2,4,6;J = H, K., = “exact” value; ¥ = analytical solu-
tion at level n. - )>:the averaging is done over the entire grid used in the numerical solution.
tFor a; = 1, the leading term is the exact solution.
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Table 2. Percent mean relative error in the value of the Re Cp, using one (n = 2). two (n = 4) and three
(n = 6) terms of the expansion (1)
a, ¥ ERRY ERRY ERRY ERR{ ERRY} ERR{
02 0.1 2.09 1.87 .75 1.96 1.84 1.71
0.5 0.1 1.32 1.25 1.17 1.17 1.13 098
0.8 0.1 041 0.36 0.31 0.34 027 0.19
1.0001 0.1 201071 20x107'° 20x107'° 19x107'° 19x107'° 1.9x10°!°
1 0.1 0 0 0 0 0 0
1.25 0.1 0.32 0.29 0.24 0.28 0.21 0.15
2.0 0.1 1.11 0.95 0.88 1.06 0.92 0.83
5.0 0.1 1.95 1.83 1.72 1.89 1.81 1.68
20 0.0001 0.78 0.72 0.65 0.74 0.69 0.60
20 0.001 097 0.83 0.77 0.94 0.81 0.73
20 0.01 1.05 092 0.84 1.01 0.89 0.81
2.0 0.1 1.11 0.95 0.88 1.06 0.92 0.83
20 03 1.23 1.15 1.05 1.19 1.12 1.02
Note: ERR = 100{[1/(ReCp);1|(ReCp), — (Re Cp)P|>, n=2,4,6; J=H,K. (ReCp), = “exact”
value; (Re Cp)§' = analytical solution at level n. (- ): the averaging is done over the entire grid used in the
numerical solution.
*For a; = 1, the leading term is the exact solution.
1000 tion term form a rapidly diminishing sequence, or whether
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Fig. 3. Plot of ReCj, vs the solid volume fraction y, for

selected prolate (a3 > 1) and oblate (a; < 1) spheroid-in-cell

geometries, for both types of BC formulation. The results

from the leading term are shown with lines, whereas those

from the numerical “exact” solution are shown with small
circles {open or full).

beyond this range if a rougher approximation is satisfactory.
This is attributed to the fact that the leading term satisfies all
the BCs exactly, while it satisfies the differential equation, eq.
(1), approximately. All the rest of the expansion (namely, the
correction term) is needed to make the small adjustment
necessary for E*y = 0 to be satisfied exactly. Having reached
this conclusion, it is important to examine whether the
individual terms of the expansion that comprises the correc-

(conceivably) the higher-order terms are sizeable and they
simply happen to have a small sum through cancellation.
The results of Tables 1 and 2 show that, fortunately, the
former is the case.

Table 1 gives the percent mean relative error in the value
of the streamfunction ¥, when one uses the leading term only
(ERR{, ERR{"), when one uses the first two terms (ERRY,
ERRY'), and when one uses the first three terms (ERR{,
ERR{') of the expansion. The subscripts H and K indicate
Happel-type and Kuwabara-type BCs, respectively. We ob-
serve the following.

The mean relative error in ¥ is very small (of the order
of 1% or less) over the range {} <a; <50<y <03}
The mean relative error in y increases as the deviation
of the axis ratio, a,, from unity (for a; = 1 the leading
term ' is the exact solution) increases and as the solid
volume fraction, y, increases.

The second and third terms, each, provide small correc-
tions, and they do not show sign alternation.

The relative error for Happel-type BCs is smaller than
that for Kuwabara-type BCs.

Table 2 gives the percent mean relative error in the value
of Re Cp, when one uses the leading term only, when one uses
the first two terms, and when one uses the first three terms of
the expansion. We observe the following,

o The mean relative error in Re Cp is small (of the order of
2-3% or less) over the range {{ < a4, < 50<y<03}.

o The mean relative error in Re Cj, increases as the devi-
ation of the axis ratio, a,, from unity (for a; = 1 the
leading term gives the exact solution) increases and as
the solid volume fraction, 7, increases.

e The second and third terms, each, provide small correc-
tions, and they do not show sign alternation.

o The relative error for Happel-type BCs is smaller than
that for Kuwabara-type BCs.

4. CONCLUSIONS

Evaluation of the validity of the leading term ¥®(t,{) in
the expansion (1) was made through comparison with the
exact solution, obtained numerically, in the case of a flow
problem of considerable practical interest. The problem un-
der consideration is that of Stokes flow around a spheroidal
particle in a spheroidal envelope, the solution of which in the
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form of eq. (3) was obtained recently, with Kuwabara-type
BCs (Dassios et al. 1994), and Happel-type BCs (Dassios et
al., 1995). For axis ratio a; = 1, the leading term coincides
with the exact solution for spherical geometry. As a; deviates
from unity (a3 > 1 for prolate spheroids, a; < 1 for oblate
spheroids), the discrepancy between the leading term and the
exact solution becomes discernible, but it remains small for
moderate values of a;. In the range {3 € a3 < 5,0 <y < 0.3}
the leading term is an excellent approximation to the exact
solution; the relative error in ¥ given by the leading term in
this range remains smaller than ~ 1%, while the relative
error in the friction coefficient remains smaller than 2-3%.
Hence, the leading term '?) can be used for most engineer-
ing applications in this range, and even beyond, if rougher
approximations are acceptable.

This remarkably good behavior of the leading term is
attributed to the fact that it satisfies exactly all the BCs (in
both types of formulation), and at the same time it is a very
good approximate solution of the differential equation
E*j = 0. All the rest of the expansion is needed to make the
small correction that is required for the above equation to be
satisfied exactly. The magnitudes of the individual terms of
the rest of the expansion are small compared to the leading
term, and form a rapidly diminishing sequence.
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