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In previous publications, the authors have developed theo- 
retical models of mass transfer from a slowly moving dilute 
solution to a swarm of spheroidal adsorbers using the parti- 
cle-in-cell approach. In the high Peclet number region 
(Coutelieris et al., 19931, analytical expressions have been 
provided for the solute concentration, the local and overall 
Sherwood number, and the adsorption efficiency. In the 
moderate Pe region (10 -< Pe < 1,000) where solute diffusion 
in the direction of flow becomes non-negligible, a novel 
boundary condition on the outer surface of the cell has been 
proposed (Coutelieris et al., 19951, which ensures flux conti- 
nuity across the surface even in cases where the diffusion 
layer crosses or lies entirely outside the outer cell boundary 
(except for the point of impact). Typical concentration pro- 
files, Shenvood number values, and adsorption efficiency val- 
ues have been calculated numerically as functions of the solid 
fraction of the swarm, the Peclet number, and the aspect ra- 
tio of prolate and oblate spheroids. 

From the engineering viewpoint, the overall Sherwood 
number is the most significant quantity for applications that 
involve mass transfer to solid surfaces (catalysis, fluidization, 
filtration, and so on). However, although accurate Sh values 
for Pe 2 10 can be extracted either from tabulated data or 
analytical expressions, the region 0 < Pe < 10 remains, practi- 
cally, unexplored. The goal of this article is to propose a sim- 
ple, working expression for the overall Shenvood number Sh, 
for prolate and oblate spheroidal adsorbers that can be used 
for engineering applications over a wide range of Pe values 
including the limiting cases Pe = 0 (diffusion control) and Pe 
--* 00 (convection control). 

For isolated spheroids, Clift et al. (1978) proposed an ex- 
pression for Sh, which can be cast in the following form 

where K is a geometrical factor given in Clift et al. (1978) 
and Shz(a,) is the overall Shenvood number as Pe .+ 0. For 
prolate spheroids 
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and for oblate ones 

Sh*,(a,) = 2J1-a:[cos-'(a3)l-' 

X 

where a3 is the long semiaxis of the prolate spheroid or the 
short semiaxis of the oblate spheroid. 

Equation 1 is exact for Pe=O but deviates considerably 
from the numerical results of Masliyah and Epstein (1972) 
for Pe # 0 (Figure 1). 

A substantially more accurate expression for the overall 
Sherwood number for isolated spheroids can be obtained with 
the simple addition of the Sh, value for Pe = 0 and the ana- 
lytical expression for Sh, in the high Pe region obtained by 
Coutelieris et al. (19931, in analogy with the original sugges- 
tion of Levich (1962) for isolated spheres. The direct additiv- 
ity of the diffuse and convective terms can also be derived on 
the basis of the Langmuir model (see Churchill, 1983). In the 
case of isolated spheroids this combination gives 

Sh , = Shz ( a3 + 0 .997g0 ( a,) Pe 'fi ( 3 )  

In Eq. 3 go(a31 = g(a,, y -+ 01, where g(a,, y )  is a func- 
tion of the aspect ratio of the spheroid and of the solid frac- 
tion of the swarm y defined in Coutelieris et al. (1993). Tab- 
ulated values of this function for several y and a 3  values are 
given in the same publication. [lt should be noted here that 
some analytical expressions in that work can be simplified 
further using the exact relation c'(T,' - 1) = 11. Equation 3 
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eled as convective mass transfer within a spheroid-in-cell. The 
approximation reads now 

where Sh'Ja,, y )  is the overall Sherwood number at the limit 
Pe + 0. For prolate spheroids 

- 1  
b1(c+a3) - I  

S h b = 2 c  l+-sin-'- ( l,) [In c + b ,  ] (5a) 

and for oblate ones 

where c and Z are the semifocal lengths of the prolate and 
oblate spheroids, respectively. Note that the lengths c, Z, b, 
and b, can be determined from the quantities a ,  and y ,  and, 
consequently, Shb and %: are functions of a,  and y ,  alone. 
Alternatively, Eq. 5a can be expressed as 

where 7, ( = a 3 / c )  and T-(= b,/c) are the values of the 
(modified) prolate spheroidal coordinate T at the inner and 
outer spheroidal surfaces (Dassios et al., 1995). Similarly, Eq. 
5b can be expressed as 
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Figure 1. Overall Sherwood number vs. Peclet number 
for isolated (a, b) oblate spheroids; (c) sphere; 
(d, e) prolate spheroids. 
Comparison between the two approximating formulae 
(dashed lines: Eq. 1; solid lines: Eq. 3) and numerical solu- 
tion (marked points). 

predicts the exact value at Pe = 0, provides accurate Sh, esti- 
mates for Pe > 1,000 (where only the second term on the 
righthand side survives), and provides satisfactory estimates 
of the Sh, value in the region 0 < Pe < 1,OOO (Figure 1) as 
compared to the numerical values of Masliyah and Epstein 
(1972), which were reproduced for the sake of this work by 
the authors. Figure 1 shows that Eq. 1 overestimates the ac- 
tual Sh, value for Pe > - 25 and any aspect ratio examined 
here (1/5 I a3 I 5; both prolate and oblate geometries) in- 
cluding the case of spherical adsorber (a, = 1). On the other 
hand, Eq. 1 underestimates the actual Sh, value for 
0 < Pe < - 10 and all aspect ratio values examined. 

A similar approach is adopted in the present work for the 
case of mass transfer to a swarm of spherical particles mod- 

x (tan-'Ao - tan-'A,) (5d) 

where A,(=a,/E) and A p ( =  b3/E) are the values of the 
(modified) oblate spheroidal coordinate A at the inner and 
outer spheroidal surfaces. The parameter pairs (T,, 7-1, or 
( A a ,  A-), can be used instead of ( a 3 ,  y ) .  

Figure 2 compares the predictions of Eq. 4 with the numer- 
ical predictions of the spheroid-in-cell model, which was de- 
veloped by Coutelieris et al. (1995) and incorporated the 
aforementioned boundary condition of flux continuity across 
the outer cell surface. It was shown in that work that for 
Pe 2 lo3 the numerical results virtually coincide with the pre- 
dictions of the analytical solution for high Pe values (Coute- 
lieris et al., 1993). For Pe = 0, Eq. 4 obviously yields the exact 
value, which is a function of the aspect ratio and the solid 
fraction of the swarm. Note the very good agreement be- 
tween the predictions of the formula suggested here (Eq. 4) 
and the numerical results for Pe 2 10 for several values of the 
solid fraction of the swarm and for relatively high aspect ra- 
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Figure 2. Overall Sherwood number vs. Peclet number 
in a swarm of adsorbing (a) prolate and (b) 
oblate spheroids. 
Comparison of the predictions of the formula proposed in 
this work (solid curves) to numerical results. 

fraction of the swarm and for relatively high aspect ratio val- 
ues. The mean relative error over the difficult region 10 < Pe 
< 10’ for all the geometries of Figure 2 is less than 4%. 

In conclusion, a simple expression is proposed in this work 
which can provide reliable estimates of the overall Shenvood 

number during mass transfer to adsorbing spheroidal parti- 
cles over the entire range of Pe values. In the limiting case of 
y -+ 0 (isolated spheroid), this expression is accurate over the 
entire Pe value range [O, x )  within the tolerance accepted in 
engineering calculations. For mass transfer to a swarm of 
spheroids, the proposed expression is exact for Pe = 0, highly 
accurate for Pe 2 1,000, and sufficiently accurate (better than 
4% for 0.2 < u3 < 5 and 0 < y I 0.2) for engineering applica- 
tions in the region 10 < Pe < 1,000. It can also serve for engi- 
neering estimates of Sh, in the region 0 < Pe < 10, which 
cannot be investigated within the framework of particle-in-cell 
approaches as shown recently by Coutelieris et al., (1995) be- 
cause of the fact that the diffusion layer lies entirely outside 
the cell envelope and the assumptions that underlie the parti- 
cle-in-cell concept are strongly violated. 
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