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The mass transport problem from a Newtonian fluid to a swarm of prolate and/or oblate 
spheroidal adsorbers under creeping flow conditions is considered here. The spheroidal-in-
cell model is used for the analytical description of the flow field within the swarm. The 
convective diffusion equation along with the appropriate boundary conditions for the 
description of the adsorption upon the solid surface is solved analytically for high Peclet 
numbers and numerically in the low Peclet regime. In both cases, analytical expressions for 
the adsorption rate are obtained. It is found that the oblate geometry offers significant 
advantage for capturing the diluted mass compared with the prolate one even in strongly 
convective environments. It is also shown that the assumption of instantaneous adsorption 
overestimates significantly the adsorption efficiency.  

1. INTRODUCTION
Modeling mass transport through swarms of particles has attracted significant interest 

mainly in relation to fluid flow and the associated physicochemical processes. Most of the 
proposed models derive analytical solutions for the mass transport problem under creeping 
flow conditions by assuming spherical or cylindrical shape of the particles [1]. Happel and 
Kuwabara have presented models that solve analytically the creeping flow problem for 
spherical geometry [2,3]. Both these models are based on the representation of the overall 
solid mass of the swarm by just one spherical particle, which is embedded in a spherical or 
cylindrical liquid envelope keeping the porosity equivalent to that of the swarm. However, in 
almost all practical applications, the particles are of spheroidal shape instead of spherical [4]. 
An analytical model for the representation of the flowfield within the swarm of spheroidal 
particles has recently been proposed for both Happel- and Kuwabara-type boundary 
conditions [5,6]. This analytical solution has already been applied in the study of mass 
transport processes within swarms of spheroidal particles for both high and low Peclet values 
[7,8] in a way quite analogous to previous investigations concerning particles of spherical 
shape [9-11].



Fig. 1. Prolate and oblate "spheroid-in-cell" models

The weak point of all these approaches is the postulation of instantaneous adsorption 
occurring on the liquid-solid interface. This approximation, based on the assumption of the 
very thin diffusion layer, which is valid only for high Peclet values, produced analytical 
expressions for the concentration profile in that regime, while, for low Pe a numerical 
treatment is necessary. Unfortunately, instantaneous adsorption is rather rare corresponding to 
a very limited range of applications. A more realistic approach is adopted here based on an 
adsorption - heterogeneous reaction - desorption mechanism, which describes the adsorption 
of the diluted mass upon the solid surface with high accuracy [12-15]. More precisely, it can 
be supposed that the component A, which is diluted in the bulk phase, is initially adsorbed by 
the solid surface where a heterogeneous reaction takes place and its products, which are 
considered inactive and of very low concentration, are again desorbed in the bulk phase. The 
adsorption is assumed to occur due to vacant sites that are normally distributed over the solid 
surface while the whole process can be described by an overall rate according to basic 
thermodynamics analysis [16].  

2. THEORY

Consider a solid spheroid having long semi-axis a3 and semi-focal distance 2
3 -1α a , which 

is surrounded by another confocal spheroidal liquid envelope, whose thickness is adjusted so 
that the porosity of the granular medium is equal to that of the model. The spheroidal-in-cell 
model, predicts the stream function, Ψ, for creeping flow conditions in the prolate coordinates 
system (η,θ) as follows [5]:
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where D, Λ2, Λ3 and Λ4 are η- and θ-dependent coefficients defined in Dassios et al. [5] 
and Gn(x) and Hn(x) are the Gegenbauer polynomials of the first and second kind, 
respectively, of degree –1/2 and of order n.

The governing equation for the steady state mass transport in the fluid phase within the 
porous medium can be written in prolate spheroidal coordinates and in dimensionless form as: 
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The above equation can be integrated with the following boundary conditions:

cA (η=ηβ,θ)=1, 0  θ  π         (3a) 
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,   0 < θ < π          (3e)

The first boundary condition is equivalent to the well-known Levich approach (cA=1 for 
η ), according to which, it is supposed that the concentration values vary only within a 
very thin concentration layer while it is supposed to keep its bulk value elsewhere [9]. Eq. 
(3b) has been proposed by Coutelieris et al. [8] in order to ensure the continuity of the 
concentration upon the outer boundary of the cell for any Peclet number. Furthermore, eq. 
(3c) and (3d) express the axial symmetry that has been assumed for the problem. The 
boundary condition (3e) can be considered as a significant improvement of Levich approach, 
where instantaneous adsorption on the solid-fluid interface (cA(η=ηα,θ)=0) is also assumed for 
any angular position θ. In particular, eq. (3e) describes a typical adsorption, 1st order reaction 
and desorption mechanism for the component A upon the solid surface [12,16] where ks is the 
rate of the heterogeneous reaction upon the surface and the concentration of component A 
upon the solid surface, cAS, is calculated by solving the non linear equation

( , )   - ( , ) 0d a a
s A A A α AS A A α mk k k c η θ N c k c η θ ξ     (4)

which relates the surface concentration of A, cAS (a quantity that is difficult to determine 
experimentally), with its concentration in the bulk phase very close to the solid surface, 
cA(ηα,θ).  In the above eq. (4), the terms a

Ak and d
Ak denote the adsorption and desorption rate 

of component A, respectively, ξm is the concentration of the vacant sites on the solid surface 
and N is the Avogadro number [12]. 

In the high Peclet number regime (Pe >>1), the concentration boundary layer is very thin 
compared to the local radius of curvature of the particle, and the curvature term 
coth Ac    can be neglected. The same holds for the tangential diffusion terms 2 2

Ac θ 
and cot Ac   , which were also shown to be insignificant for high Peclet values [8]. In this 
case, eq. (2) becomes parabolic on θ and it can be solved analytically in a manner quite 
similar to that of Coutelieris et al. [7], providing concentration profiles in the fluid phase as 
follows
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and c2 and c3 are coefficients that can be calculated by solving the non-linear system
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1.17c2+c3=1         (7b)

where E and f(θ) are terms defined by Coutelieris et al. [7]. Further mathematical 
manipulations lead to the following expression for the overall adsorption efficiency, λo,
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which expresses the ratio of the adsorbed mass to the overall amount of mass moving within 
the porous material.

The corresponding expressions for the case of oblate spheroids-in-cell are quite 
analogous to those of the prolate case. Differences are observed only in the following 
equations
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The moderate and low Peclet regimes are characterized by significant magnitudes of all 
the terms of eq. (2), which should therefore be solved numerically. A non-uniform finite -
difference discretization scheme has been chosen for the system, estimating the overall 
adsorption efficiency, λo, as follows:
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for the cases of prolate and oblate spheroids, respectively.



3. RESULTS & DISCUSSION 
Fig. 2 shows the concentration profiles for the component A at different angular positions 

for the cases of prolate (a) and oblate (b) spheroids-in-cell. For high Peclet numbers 
(Pe=1000), higher concentration gradients are found for prolate spheroids compared to those 
for oblate ones, as it has also been observed previously for the case of instantaneous 
adsorption [7]. Principally, the concentration decreases, as the angular position is closer to the 
stagnation point and approaches its bulk value at distances less than 25% of the envelope 
thickness, i.e. close enough to the solid surface in all cases. Dashed lines in Fig. 1 denote the 
concentration profiles for a low Pe value (Pe=15). Note that this value has been selected to be 

high enough to ensure the satisfaction of the condition  0Ac


   at η=ηβ and θ=0 [8]. A 

large reduction of the concentration gradients towards the solid surface is observed, compared 
with the case of high Peclet numbers, because the diffusion starts playing a dominant role 
over convection as Pe decreases. Furthermore, an important weakness of Levich approach can 
be observed in the very low concentration regime at η=ηβ within the tail region (θπ) where 
the concentration tends to reach the constant bulk value. Levich’s approach fails to predict 
acceptable concentration values in this area because the fundamental assumption of very thin 
concentration boundary 
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Fig. 2. Concentration profiles for prolate (a) and oblate (b) spheroidal geometry for high and 
low Peclet at three different angular positions
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layer is not valid in this region even for high Pe. Finally, it should be stressed that the 
concentration upon the surface, cA(ηα,θ), takes its higher value at the impact point and 
decreases monotonically as θ tends to π for the case of prolate spheroids and high Peclet 
number. The maximum concentration value appears at the equator for the case of oblate 
spheroids where the thickness of the diffusion film becomes minimum [8]. This behavior is 
not observed for low Peclet numbers where the surface concentrations are extremely higher 
than those of the high Pe case and therefore, it can be considered that the accessibility of the 
solid surface is high enough to produce smooth concentration profiles for the adsorbed mass.  
The dependence of the overall adsorption efficiency on the Peclet number for both prolate and 
oblate geometries is presented in Fig. 2. A considerable decrease of the adsorption efficiency 
is observed as Pe increases. This is expected, as the more convective flows do not allow the 
component A to be captured by the solid surface. In general, oblate spheroids present higher 
frontal surface than the prolate ones, and therefore, their ability for adsorption is higher. This 
advantage of oblate geometry disappears in the case of low Peclet where almost all parts of 
the adsorbing solid surface become active as the environment becomes more diffusive. The 
values for the overall adsorption efficiency predicted considering the model of instantaneous 
adsorption are 10-35% higher, depending on the Pe, the geometry, the porosity and the order 
of the reaction, than those calculated by suggesting the more realistic model of adsorption, 
described by eq. (3e) & (4) and low Peclet values, because the concentration on the solid 
surface attains in the latter case non zero values making the difference cA(ηβ,θ)-cA(ηα,θ) very 
small for some θ-values. The impact of this effect is higher than that of the decrease of the 
concentration gradients observed when the realistic adsorption process is adopted instead of 
the instantaneous adsorption postulation.
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Figure 3: Influence of the Peclet number on the adsorption efficiency for typical prolate and 
oblate spheroids-in-cell.

4. CONCLUSIONS 
The problem of mass transfer from a moving Newtonian fluid to a swarm of prolate 

and/or oblate stationary spheroidal adsorbing particles under creeping flow conditions is 
solved using a spheroidal-in-cell model. The flow field through the swarm was obtained by 
using the spheroid-in-cell model proposed by Dassios et al. [5]. An adsorption – 1st order 
reaction - desorption scheme is used as boundary condition upon the surface of the spheroid 
in order to describe the interaction between the diluted mass in the bulk phase and the solid 
surface. The convective diffusion equation is solved analytically for the case of high Peclet 
numbers where the adsorption rate is also obtained analytically. For the case of low Pe a non-



uniform finite difference scheme is used to treat the problem numerically. It is found that the 
adsorption rate is higher for oblate spheroids-in-cell compared to spheres-in-cell and prolate 
spheroids-in-cell. Consequently, the oblate geometry offers a significant advantage compared 
with the prolate one for convective environments. However, this tendency fades away as the 
environment becomes diffusive. Results presented here are more accurate than previous ones 
produced under the assumption of instantaneous adsorption, which leads to a 10-35% 
overestimation of the adsorption efficiency.  
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