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The Sherwood number representing the mass transfer coefficient for transport from a 
moving fluid to a swarm of spherical particles is calculated in the range of high porosities. 
The mass transport problem is solved both analytically and numerically under the assumption 
of instantaneous adsorption upon the liquid-solid interface. The velocity components within 
the liquid phase are obtained either by using the analytical formulations of the sphere-in-cell 
model or by solving numerically the creeping flow problem in a stochastically constructed 
packing of spheres. It is found that the agreement between numerical and analytical data is in 
general reasonably good for the porosity range considered. Limitations of both the numerical 
and analytical approaches are identified. Numerical predictions are deteriorating rapidly for 
extremely high porosities (above 0.95). On the other hand, the accuracy of analytically 
obtained Sherwood values becomes weaker as the porosity decreases because the fundamental 
assumptions of the analytical model are not satisfied in this case.

Keywords: Peclet number, convection, diffusion, Sherwood number, porosity, granular media

1. INTRODUCTION
Mass transport within high porosity granular porous media is a physicochemical process, 

which attracts considerable interest from both the research and technological point of view. 
As porous media are generally characterized by highly complex internal geometry, 
appropriate modeling of such a process is necessary for the derivation of meaningful 
conclusions. Several analytical and numerical models have been proposed in this respect, 
dealing in general with the estimation of the overall mass transport characteristic parameters 
such as the Sherwood number and the adsorption rate for a wide range of different geometries 
[1-4]. Most of these models derive analytical solutions for the mass transport problem under 
creeping flow conditions based on the representation of the overall solid mass of the granular 
medium by just one spherical particle, which is embedded in a spherical liquid envelope [5,6]. 
The ratio of the solid volume to the total volume represents the solid volume fraction, i.e. the 
porosity of the medium. On the other hand, considerable effort has been invested in 
performing numerical simulations for the study of convection, dispersion and interfacial 
transport in homogeneous porous media. The macroscopic approach developed  by Quintard 
and Whitaker [7] based on the volume averaging method, is a representative example where 
efficient numerical schemes for the solution of the local closure problems were also proposed.



In almost all the above models it is supposed that the solid surfaces instantaneously 
adsorb the mass, which is diluted within the fluid that flows through the medium. This 
approach has been initially proposed by Levich [8] who obtained analytical expression for the 
overall Sherwood number for the case of a single isolated sphere in an unbounded fluid. 
Significant improvements to this model, including the sphere-in-cell model and an intelligent 
representation of the mass transport conditions, have been presented later [9-11]. 

The objective of this work is to determine the influence of the Peclet number (expressing 
the relative importance of convection and diffusion in the medium) on the fluid/solid mass 
transfer coefficient, expressed by the Sherwood number. The focus in this part of the work is 
on granular media of relatively high porosities (0.6 to 0.95). To attain this objective, 
mathematical models for the mass transport problem through a high porosity granular medium 
under creeping flow conditions are employed. Two approaches are considered: a numerical 
solution for moderate Peclet values (500�Pe�70) and relatively low porosities (ε�0.6) and 
an analytical approach based on the sphere-in-cell model for high porosities (ε�0.8) and high 
Peclet values  (Pe�100). The overall Sherwood number is calculated in all cases and 
comparisons between analytical and numerical results are performed.

2. MODELING APPROACH
Consider a Newtonian incompressible fluid containing a component A in high dilution 

(<0.05M) and moving under creeping flow conditions within a relatively high porosity porous 
medium. The solid surface adsorbs instantaneously the component A. The mass transport 
regime (convection and/or diffusion) is expressed by the value of the Peclet number, defined 
as 
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where α is the characteristic length, u0 is the characteristic velocity and D is the diffusion 
coefficient.

2.1. Analytical solution
Consider a solid sphere of radius α, which is surrounded by another concentric spherical 

liquid envelope of radius β, whose thickness is adjusted so that the porosity of the medium is 
equal to that of the model. The governing equation for the steady state mass transport in the 
fluid phase within the porous medium can be written in spherical coordinates as 
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where the velocity components are given as [5,6] 
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The above transport equation can be integrated with the following boundary conditions:

cA (r=β,θ)=1, 0  θ  π          (4a) 
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and

cA (r=α,θ)=0, 0  θ  π          (4e) 

The first boundary condition is equivalent to the Levich approach, given elsewhere as 
cA=1 for r  [8]. Eq. (4b) has been proposed by Coutelieris et al. [1] to ensure continuity 
of concentration at the outer boundary of the cell for any Peclet number. Moreover, eq. (4c) 
and (4d) represent the axial symmetry assumption considered for this problem. The last 
boundary condition describes a typical instantaneous adsorption mechanism for the 
component A upon the solid surface.

For the case of high Peclet numbers (Pe >>1), the concentration boundary layer is very 
thin compared to the local radius of curvature of the particle, and, thus, the curvature term as 
well as the tangential diffusion terms can be neglected as it has already been shown [1,8,11]. 
In that case, eq. (2) becomes parabolic on θ and can be solved analytically in a manner quite 
similar to that of Levich, providing concentration profiles in the fluid phase of the form

34
-
9

0

( )  1.17  
z

t

Ac z e dt   (5)

where 

3
3

3 sin
    

4  -0.5sin 2
Pe

z r


  
  (6)

The overall Sherwood number, Sho, is defined as:
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where k0 is the overall mass transport coefficient. After some mathematical manipulations, the 
following expression for Sho, can be derived
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The moderate and low Peclet numbers correspond to cases where all terms of eq. (2) are 
significant and numerical solution is required. A non-uniform finite-difference discretization 
schema has been chosen for solving the boundary value problem of eq. (1) with boundary 
conditions (3a-e), estimating the overall Sherwood number, Sho, as follows:
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Finally, a predictive form for the overall Sherwood number can be used providing 
satisfactory predictions for any Peclet value [12]:
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where numerically derived values of g(a) have been tabulated by Coutelieris et al. [13] and 
respective values for ( , 0)oSh a Pe  by Burganos et al. [12]. 

2.2. Numerical solution
The pore scale boundary value problem is described by the advection-diffusion equation
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where cA is the concentration of component A in the flowing phase, t is time and v is the 
interstitial fluid velocity. At the fluid-solid interface it can be considered

0Ac           (12)

To obtain numerically the mass transfer coefficient, a porous medium is stochastically 
constructed in the form of a sphere pack. Specifically, the representation of the biphasic 
domains under consideration is achieved by the random deposition of spheres of radius R in a 
box of length L. The structure is digitized and the phase function (equal to zero for solid and 
unity for the pore space) is determined in order to obtain the porosity and to solve numerically 
the convection- diffusion problem. The next for this purpose is to obtain the detailed flow 
field in the porous domain through the solution of the Stokes equations:

2p    v        (13a)
0 v        (13b)

        at fluid- solid interfacev 0        (13c)

where p and μ are the pressure and the viscosity of the fluid, respectively.
A staggered marker-and-cell (MAC) cell is used for the solution of the 3D stokes flow 

problem in a box made of cubic elements. An initial guess for p is determined through the 
solution of a Laplace equation. Next, v is calculated from the corresponding momentum 
balances and the continuity term 0 v  is determined. The pressure is corrected through an 
artificial compressibility equation of the form:
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The above steps are repeated until convergence is reached.
Having determined the velocity field in the medium, the procedure outlined by Quintard 

and Whitaker [7] is followed to determine through an upscaling procedure the mass transfer 
coefficient. This approach proceeds by decomposing the local concentration into its interstitial 
average and a fluctuation
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where the symbol 
w

represents volume averaging in the fluid phase. The variable sw is the 

solution of the equation [7]:
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where 1ws  at fluid- solid interface, sw is spatially periodic, 0w

ws , and k* is the mass 

transfer coefficient defined as:
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By nws is denoted the unit vector normal to the fluid-solid interface pointing from fluid to 
solid while  Aws reperesents the area between the fluid-solid phases.

By adopting the decomposition

*1ws k            (18)

where  is chosen to be solution of the following boundary value problem:
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 is spatially periodic        (19c)

the mass transfer coefficient is given by
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because the average of sw over the porous medium is nullified. The Sherwood number is then 
determined as:
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where lc is a characteristic length. 
The equations (15a-c) are discretized with upwind finite differences and the resulting 

linear systems of equations are solved using the Succesive Over Relaxation (SOR) technique. 

3. RESULTS & DISCUSSION 
Fig. 1 presents the overall Sherwood number derived either analytically (continuous line) or 
numerically (discrete points) as a function of the Peclet number for a relatively high porosity 
value (ε=0.9). The Sho presented here has been unified by simple manipulations to be 
consistent for both the analytical and numerical approach. An almost monotonic increment of 
Sho is observed as the Peclet values increase because of the higher concentration gradients 
close to the adsorbing surfaces for highly convective regimes. The agreement between 
analytical and numerical solutions is very good with a relative difference less than 10% for 
any Pe value. This kind of agreement can be attributed to the high porosity value used, taking 
into account that the analytical approach has been shown to be highly accurate in that range 
[1,11,12]. This is valid the basic assumption made in all such analytical models for an 
adequate representation of both the velocity components and the concentration profile is that 
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Fig. 1. Dependence of the overall Sherwood number on the Peclet for a high porosity value

ε = 0.9
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Fig. 2. Influence of the porosity on the overall Sherwood number derived both analytically 
(compact line) and numerically (discrete points)

of a very thin boundary layer, which corresponds to an outer sphere of radius that is 
significantly higher than that of the inner one, i.e. the porosity takes quite high values. 

The dependence of the overall Sherwood number on the porosity is shown in Fig. 2 for a 
rather low Peclet value. Evidently, increasing porosities do not favor mass exchange 
efficiency and the Sho drops. High porosity values correspond to low available surface for 
mass transfer leading to low adsorption rates for the porous material. Numerical predictions 
are generally in reasonable agreement with the analytical results despite the most “erratic” 
behavior of the former. This is due to the fact that the high porosities, where the analytical 
models are in principle applicable, correspond to a very low number of spheres for the numeri
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Fig. 3. Relative difference of the analytical to the numerical results for various porosities

cal representation of the porous medium. Obtaining solutions on an ensemble of stochastically 
constructed sphere packs may improve the accuracy of the numerical data. On the other hand, 
it must be pointed out that at porosities lower than 0.8, the available analytical approaches 
become gradually less accurate and therefore less dependable. 



This behavior is further exemplified in Fig. 3, where the relative difference of the 
analytical to the numerical results is presented as a function of the Peclet number for various 
porosity values. The general agreement can be considered as good enough for any practical 
use independent of Pe. 

4. CONCLUSIONS 
The problem of mass transfer from a moving Newtonian fluid to a high porosity granular 

medium considered in this work is characterized by the presence of instantaneously adsorbing 
spherical particles under creeping flow conditions. Analytical and numerical solutions are 
derived and compared for high porosities and various Peclet numbers. The well known 
sphere-in-cell model has been used for the analytical calculation of the flow field while the 
convection-diffusion equation is solved analytically in accordance to the Levich approach [8] 
and the associated improvements [1,12,13]. A stochastically constructed sphere pack is 
considered for the numerical solution of the problem. It is found that the overall Sherwood 
number is higher as the porosity and Peclet number increase. The comparison of the analytical 
and numerical approaches shows that both of them are sufficient in different ranges of 
parameter values (Pe & ε). Indeed, the analytical model is valid for porosities higher than 0.8 
while the numerical simulation fails for very high porosity values (ε>0.95).  
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