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Abstract. The heat transfer within a fuel cell at steady state conditions is considered here for one

dimensional geometry. Analytical solution for the heat transfer equation accompanied by the

appropriate boundary conditions is obtained. The heat transfer coefficient is also estimated for the

case of ideal heat exchange. It was found that the geometrical characteristics of the cell that are

strongly related with its electrical ones (namely, the ohmic resistance and the current developed),

are favourable parameters for the maximization of the heat transfer.
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1. Introduction
One of the most promising applications in the area of

electricity production are fuel cells because they convert

chemical energy directly to electricity presenting almost

neglible impact in the aggravation of environment. Solid

Oxide Fuel Cells (SOFCs), that are solid ceramic cells,

seem to be the best option among all the types of fuel cells

in the case that the operational temperature is high although

this type of application faces some crucial designing

problems such as self-diffusion of materials used, high

stress etc. [1,3]. The electrochemical reaction for this energy

conversion takes place in the cathode of a typical SOFC,

producing electricity accompanying by a significant amount

of heat, the management of which is one of the most

important problems in SOFC designing [4]. There have

been many recent works regarding several different

formulations for the heat transfer problems within fuel

cells, but all of them used numerical treatment to approach

an accurate solution [5-8].

This work presents an analytical model for the thermal

transport phenomena occurred within a SOFC stack

operating at high temperatures. By considering the complete

conduction-convection heat transfer equation along the cell,

analytical expressions for the spatial distribution of both the

gas and the cell temperatures as well as for the thermal

conductivity are obtained by using an averaging technique.

As the modeled fuel cell is a real cylindrical design and the

electrochemistry considered is quite complete, the basic

barriers mentioned above are overcome and the use of these

analytical formulas can be very helpful in the design and/or

in the operating phase of such systems, as the produced

results are sufficiently accurate for any practical application.

2.  Theory
A typical fuel cell stack consists of an anode and a cathode

compartments between which a catalyst (electrolyte) layer

exists. The atmospheric air flows in the cathode gas channel

while the anode is exposed to hydrogen. Both oxygen and

hydrogen are assumed to be enough for having the maxi-

mum allowable utilization of hydrogen, i.e. the difference of

partial pressure of hydrogen is zero. The overall fuel cell

reaction is in most cases a formation of water from

hydrogen and oxygen, producing electricity and heat as

follows:
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H2 + 
1

2
 O2 → H2O + heat + electricity      (1)

By considering an averaging procedure in the direction

that is perpendicular to the gas flow, a consequent one-

dimensional model results, having as basic variable the gas

temperature, Tg(x), averaged in a cross-section of the cathode

as follows

Tg (x) = 
1

Ly
Tg (x,y) dy

0

L y

∫      (2)

where x= x/Lx is the dimensionless spatial coordination and

Lx, Ly are arbitrarily defined characteristic lengths for the x-

and y-direction, respectively. This averaging procedure

should be applied separately in the solid and the gas phase,

in order to avoid missing of information about the heat

sources upon the solid-gas interface. Therefore, it is ne-

cessary for the heat transfer equation to be considered in

both the two different shrinking phases.

The specific flux of the heat produced within the cell at

any point x is constant

s = j (Ut + jr – E)      (3)

where Ut = 1.29 V denotes the thermo neutral voltage, and r

denotes the specific resistance of the cell which is the

summation of the ohmic and the anodic and cathodic

polarization resistances. The electromotive force is constant

at any point, x, of the domain [0,1] as has been previously

presented by Tsiakaras and Demin [9].

As the conduction is the only available mechanism for

the heat transport within solids, the heat transfer in the solid

phase of the cell is described by the following differential

equation:

−αs
d2Tc(z)

dz2
 = s = j (Ut + jr – E) (4)

where αs denotes the thermal diffusivity within the solid

phase. After some simple mathematical manipulations, eq.

(4) can be written as:

d2Tc (x)

dx2
= − j

αs
U t + jr− {

               
R Tc(x)

4F
ln0.209K2 +2ln

pH 2
(0)

1-pH2
(0)

 

 
  

 

 
  

 

 
 
 

 

 
 
 

 
 
 

  

 (5)

having general solution of the form:

Tc(x) = −
j

2αs
U t + jref −  {

    
R Tc (x)

4F
ln0.209K2+2ln

pH2
(0)

1-pH 2
(0)

 

 
  

 

 
  

 

 
 
 

 

 
 
 

 
 
 

  
x2 +C1x+C2

(6)

By assuming quasi-isothermal operation for the cell,

described by the boundary condition:

Tc(1) = Tc(0)  (7a)

and a commonly used Dirichlet boundary condition for the

inlet temperature:

Tc(0) = constant (7b)

the above-mentioned arbitrary constants are identified as

follows:

C1 =
j

αs
U t + jr− {

               
R Tc(x)

4F
ln0.209K2 +2ln

pH 2
(0)

1-pH2
(0)

 

 
  

 

 
  

 

 
 
 

 

 
 
 

 
 
 

  

(8a)

C2 = Tc(0) (8b)

By considering the moving air as a compressible ideal

gas and by assuming constant mass flow rate of the gas,

m
•

=ρ
πf2

4

 
 
 

 
 
 u , through a circular surface of diameter d, the

velocity u(x) can be expressed as a function of gas

temperature as follows:

u(x)=
VA

o  m
•

πd2

4
MWair

Tg (x)=0.0036
m
•

d2
Tg (x)      (9)

and, therefore, the differential equation describing the heat
transfer in the gas phase can be written as:

0.0036
m
•

d2
Tg (x)

dTg (x)

dx
 = αf

d2Tg (x)

dx2
(10)

where α f denotes the thermal diffusivity within the solid

phase. The solution of the above equation can be obtained

by using a downgrading technique for non-linear differential

equations [10] and is of the form:
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Tg (x) = 

-555.55
αf d2

m
• C3 C 4+e

x −0.0072
m
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α f d2
C3
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  (11)

By employing the boundary condition:

Tg(1) - Tg(0) = ∆Tg (12a)

and the relative Dirichlet condition:

Tg(0) = constant (12b)

the above-mentioned arbitrary constants are identified by

solving numerically the following 2×2 non-linear algebraic

system:

∆TgC4
2  - ∆Tg[ 1+e

−0.0072
m
•

α f d 2
C3

 

 

 
 
  

 

 

 
 
  

   - 2 -555.55
αf d2

m
• C3 e

−0.0072
m
•

α f d 2
C3

−1

 

 

 
 
  

 

 

 
 
  
C4

 

 

 
 
 
 

                   + ∆Tge
−0.0072

m
•

α f d 2
C3

   =  0

  (13a)

C3  = − 
Tg (0)[ ]2  m

•
 (1-C 4 )2

555.55 αf  d2 (1+C4 )2
(13b)

By employing the specific flux of the heat absorbed by

the cathode gas, the temperature of the cell, Tc(x), is related

to the gas temperature as follows:

j(Ut + jr – E) = k(x) (Tc(x) – Tg(x))     (14)

and, therefore, the local thermal conductivity, k(x), can be

calculated. The overall heat transfer coefficient k0 can be

estimated as:

ko  =  k(x) dx = j  
U t + jr−E

Tc(x) - Tg (x)0

1
∫

0

1
∫ dx (15)

Finally, the mass flow rate can be calculated by using

the macroscopic balance for the heat absorbed by gas:

m
•

 = 
Q

cp  ∆Tg
 =  

πdj(U t + jr−E)
cp  ∆Tg

     (16)

where Q is the overall heat absorbed and cp is the heat

capacity of the atmospheric air.

3.  Results and discussion
As it is senseless for a general theoretical study to fix

values for thermal diffusivities of the solid electrolyte, the

ratio of αs/α f is used instead of αs and it is adjusted to

10000 because it is known that gases are bad heat con-

ductors. Thermal diffusivities of atmospheric air at various

temperatures are taken from the appropriate published tables

[11].

Figure 1 shows the distribution of the gas temperature

along the stack's length for two typical values of

temperature difference in the gas phase (∆Tg = 50 K and ∆Tg

= 100 K). The specific effective resistance is 1 Ω and the

current density j has been fixed to 100 mA/cm2. In general,

the gas temperature presents its lower values in the inlet

area while it increases as gas adsorbs heat along the cell.

Obviously, the higher the curves of the gas temperature

presented for higher ∆Tg values. Finally, it is worth

noticing that the second derivative of Tg(x) is of three to

four orders of magnitude lower than the first one in all

cases. Additionally, 
d2Tg (x)

dx2
 is multiplied by the small

number α f and the final product becomes even smaller. This

r = 1
j = 100 mA/cm2

........ DTg = 100 K
––––  DTg = 50 K

Fig. 1. Profiles of the gas temperature for various ∆Tg.



Ionics 9 (2003)86

underlines the negligible character of conduction in the gas

phase because of the high Peclet flow of the atmospheric air

in the cathode area.

The profile of the cell temperature is presented in Fig. 2

for conditions quite analogous to those of Fig. 1 (j = 100

mA/cm2 and 300 mA/cm2, r = 1 Ω). As the gas absorbs the

heat produced by the cell, the inlet cathode gas is cooler

than the cell and it remains cooler while moving along the

cell. Furthermore, it should be stressed that, as Tc(0) =

Tc(1), the spatial variation of Tc(x) is always less than 0.5%

for any current and resistance (it corresponds to an absolute

value of 5 K with respect to the 1000 K of operational

temperature), which means that it could be accurately

considered as constant, as it has been previously reported in

the related bibliography [12]. More precisely, there are some

combinations of resistances and currents where the cell

temperature presents a really constant profile with

maximum absolute divergence from the base line less than

0.0025%. Finally, it should be noted that Tc(x) is

independent on ∆Tg as it can obviously derived from eq. (6),

(8a) and (8b). It should be also stressed out that in general

Tg(x) ≠ Tc(x), which can be interpreted as a discontinuity on

the gas-solid interface of the gas temperature. In fact, it is a

reckless and false conclusion as the interface clearly

disappeared by the averaging technique presented above.

Figure 3 presents the spatial profile of the thermal

conductivity, k(x), defined by eq. (14) as a function of the

dimensionless distance for typical values of specific

effective resistance and current density (r = 1 Ω and j = 100

mA/cm2). In agreement to previously presented results [8],

the thermal conductivity is almost constant for a wide

domain along the cell except the inlet and outlet areas,

where the end-effects force the convection thermal film to

attain its bulk values.

4.  Conclusions
The present study presents analytically obtained profiles for

both gas and cell temperatures, corresponding to forced

convection heat transfer conditions within a hydrogen-fed

solid oxide fuel cell. It is found that the temperature profile

in the gas phase is monotonically increasing from the inlet

to the outlet region while both effective resistance and

current density have limited influence on temperature. The

cell temperature is found to be practically constant along

cell's length, while the overall heat transfer coefficient is

favored by the increment of the cell operational temperature

in a linear manner.
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