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Abstract

The problem of flow and mass transport within an assemblage of spherical solid absorbers is investigated. We present an
results from the numerical solution of the convection–diffusion equation in the sphere-in-cell geometry and in stochastically co
3-D spherical particle assemblages. In the first case, we make use of an analytical solution of the creeping flow field in the sph
model while in the second we employ a full numerical solution of the flow field in the realistic geometry of sphere assemblages
moderate Peclet numbers (Pe < 102) are considered where the validity of the sphere-in-cell model is uncertain. On the other ha
selected porosities range from values close to unity, where the sphere-in-cell approximation is expected to hold, to intermedia
where its applicability becomes again uncertain. In all cases, instantaneous and Langmuir adsorption is studied. It is found that the
sphere-in-cell approach performs adequately provided that proper account of the actual porous media properties (porosity and inte
area) is taken. A simple match of porosity is not sufficient for a reliable estimation of adsorption efficiencies.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous industrial and technological applications
volving fluid flow and mass transport processes within m
tiparticle assemblages have attracted scientific interest i
cent decades, mainly focusing on industrial physicochem
processes (sedimentation, catalysis, etc.), alternative en
sources (fuel cells, etc.), and separation techniques (c
matography, filters, etc.). Although arrays of regularly s
tially distributed spheres represent an idealization of
granular media, they have been widely studied from b
the fluid dynamics and mass transport points of view [1
On the other hand, due to the complexity of their geome
random particle distributions have been the subject of ra
limited investigations until about 20 years ago (see [3,
Since then, fast advances in computational capabilities
tributed to reviving the interest in this topic with empha
placed on hydrodynamic aspects [5–7].

Of practical importance is the case of low Reynolds nu
ber flow where analytical solutions can be obtained for
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flow field and the mass diffusion and/or adsorption proc
in a simplified geometry (sphere-in-cell model). The fu
damental approach of Happel [8] and the equivalent
independently presented model of Kuwabara [9] consti
initial attempts in the direction of analytical derivation of t
velocity field under creeping flow conditions in the sphe
in-cell geometry (see Fig. 1a) while the subsequent wo
of Neale and co-workers [10–12] extended further these
oneering studies. Considerable effort has also been inv
in the numerical study of the creeping (Stokes) flow in
sphere-in-cell representation of the actual geometry of
ticle assemblages [13–15]. In addition, numerical soluti
of the Stokes equations in realistic reconstructions of po
media and spherical assemblies have been presented i
ious contexts, usually with reference to material trans
properties calculations [16,17].

When low concentration of the solute is assumed,
above approaches for the calculation of the velocity field
be very useful for the study of mass transfer from the fl
to the solid mass and vice versa. The first treatment of
problem is due to Levich [18], where a single isolated a
instantaneously adsorbing solid sphere within an unboun
moving fluid is considered and an analytical solution

http://www.elsevier.com/locate/jcis
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Fig. 1. The sphere-in-cell model (a) and the flow field and concentra
boundary layer therein (b). Bold arrows indicate the fluid flow direction

creeping flow conditions and high Peclet values (Pe � 1)
is presented. The approach of Levich yields a simple a
lytical expression for the overall Sherwood number,Sh, of
the formSh = 0.997Pe1/3. Note thatPe denotes the Pecle
number, defined asPe = UL/D, which expresses the rat
of the convective over diffusive forces in the flow regim
On the other hand, the overall Sherwood number, define
Sh = k0L/D, expresses the ratio of the overall mass tra
port rate over the diffusive rate. Here,k0 stands for the mas
transfer coefficient,L is the characteristic length,U is the
bulk fluid velocity, andD is the diffusion coefficient.

Based on a methodology similar to that of Levich, P
effer and Happel [19,20] and Sirkar [21] used Happ
model [8] to solve the problem of mass transfer to a sph
in a swarm for the high Peclet number case and obta
expressions of the formSh = f (ε)Pe1/3, where f (ε) is
a simple analytic function of the porosity,ε. In parallel,
Tardos et al. [22] proposed correlations of the formSh =
0.997g(ε)Pe1/3, using Happel [8], Kuwabara [9], and Ne
and co-workers [10–12] models, whereg(ε) is a model-
dependent function of the porosity. The review paper
Quintard and Whitaker [23] summarizes the analytical,
merical, and experimental work performed on correlatingSh
and Pe in sphere-in-cell types of geometry, sphere pac
and other granular media. It should also be mentioned th
series of publications [24–26] have studied numerically
uations where dissolution or deposition processes occ
the pore space with simultaneous change of the porosi
the medium. Uniform deposition is found at relatively lo
Damkohler numbers; however, it is clear that our work a
all the references cited examine interfacial processes no
fecting the pore size.

In particular, the case of low Peclet values is more co
plicated as far as the mass transport problem is conce
since all the terms of the convection–diffusion equation
describes it “survive” and, thus, analytical solutions can
obtained only for special cases while numerical treatm
is in general necessary. Some analytical expressions in
diffusional environments (Pe = 0) have been presented
recent decades [27–29]. More recently, Romero [30] u
an asymptotic expansion scheme to obtain an analytica
lution for the low Pe flow and mass transfer past a sing
sphere while Han et al. [31] used similarity transformat
techniques to analytically solve the problem of forced c
vective heat and mass transfer around a spherical pa
having fluid surface properties. On the other hand, num
ical solutions for mass transport problems under insta
neous adsorption have been rarely presented because
majority of applications adsorption does not occur insta
neously [32]. Recently, a general expression for the ove
Sherwood number as a function of the porosity has b
proposed by Burganos et al. [33] for a wide range of p
ticle shapes and Peclet values. This is based on analy
flow field treatment (particle-in-cell) and both analytical a
numerical handling of the convection–diffusion equation
the particle-in-cell geometry for high and low Peclet nu
bers, respectively. It must be pointed out here that, at h
Pe, Levich’s approach [18] in combination with the an
lytical flow field of the sphere-in-cell geometry describ
with sufficient accuracy the problem under consideration
both the flow and mass transfer aspects can be treated
analytically (certain diffusive terms can be safely simp
fied) [18,22,33].

In almost all of the above-mentioned works, it has be
assumed that the solid grains adsorb instantaneously
solute. Note that in these publications as well as in the
of this study by instantaneous adsorption it is meant an
reversible” adsorption process where the adsorbing sur
operates as a sink of the diffusing substance. As ins
taneous adsorption is not a frequent physicochemical
nomenon, several attempts toward modeling more real
adsorption mechanisms on solid surfaces have been m
In this respect, Wen and Wei [34] analyzed, under no-fl
conditions, the kinetics of simultaneous noncatalytic so
gas reaction systems and produced a simple mathem
description for the adsorption rate. Further advancemen
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the same direction were made by Lu et al. [35] who p
posed a simple generalized gas–solid reaction model. M
complicated models for the gas adsorption on solid surf
by using first-order heterogeneous reactions were prop
by Wanker et al. [36], who modeled a single one-chan
catalytic reactor, by Coutelieris [37], who presented a r
istic adsorption–first-order reaction–desorption mechan
for solid spheroidal absorbers, and by Mat and Kaplan [
who proposed a complicated description of the reaction
for the representation of the metal hydride formation i
hydrogen storage tank. In parallel, Rosen [39] and We
and Chakravorti [40] used Langmuir type of isotherms
describe the diffusion regime within a generalized fixed-
absorber while Shams [41] employed a somehow more c
plicated sorption/desorption scheme to obtain analytica
lution of the transient equations for the sorption/desorp
in a fixed bed packed with thin-film-coated monodispe
spherical particles.

In the present work, we focus on relatively lowPe num-
bers and attempt a comparison between the semi-anal
approaches used in the large majority of the studies s
and the full solution of the flow and mass transfer prob
in sphere assemblies. In particular, we present and com
the following:

(i) results based on the analytical solution of the flow fi
in the sphere-in-cell geometry and the subsequent
merical solution of the mass transport problem in
same geometry and for different adsorption modes;

(ii) results based on the numerical solution of the creep
flow field in stochastically constructed 3-D sphere
semblages and the subsequent numerical solution o
convection–diffusion problem in this realistic geome
under the same adsorption modes as in the above s

The range ofPe considered in our work includes rel
tively low values where the validity of the sphere-in-c
model in representing adequately the geometry of the sp
ical particle assemblage is questionable. It is already m
tioned above that at highPe the overall problem is amenab
to analytical treatment with sufficient accuracy in the s
plified geometry of the sphere-in-cell model as the flow fi
therein can be taken as an approximation of the real
and diffusive terms can be significantly simplified. On
other hand, the selected porosities vary from very large
ues (close to unity) where the sphere-in-cell approxima
is expected to hold to intermediate values where its app
bility becomes again uncertain. Three different cases fo
adsorption upon the solid surface are considered: (a) n
sorption, (b) instantaneous adsorption, and (c) adsorp
according to Langmuir isotherm. The adsorption efficie
is calculated in all cases and appropriate comparisons
made. The paper is organized as follows: The sphere-in
model geometry is presented first along with the analyt
solution for the respective flow field and the numerical f
mulation of the mass transport therein. The same prob
d

l

e

-

-

l

is then examined in the realistic domain of a stochastic
constructed sphere assembly. The results are discusse
compared in terms of the adsorption efficiency as a func
of the porosity and the Peclet number. Finally, the main c
clusions of the study are summarized.

2. Sphere-in-cell model

The sphere-in-cell geometry has been repeatedly us
a simple model for the representation of the actual com
cated geometry of the pore space in spherical particle
semblages and the approximation of the flow field ther
Consider a solid sphere of radiusα, which is surrounded
by another concentric spherical liquid envelope of radiuβ ,
whose thickness is adjusted so that the porosity of
medium is equal to that of the model geometry (see Fig.
The approaching fluid is a dilute solution of substance
which is moving toward the solid adsorbing surface. T
governing equation for the steady state mass transport i
fluid phase within the model can be written in spherical
ordinates as

ur
∂cA

∂r
+ uθ

r

∂cA

∂θ

(1)=D
(
∂2cA

∂r2 + 2

r

∂cA

∂r
+ 1

r2

∂2cA

∂θ2 + cotθ

r2

∂cA

∂θ

)
,

wherecA is the concentration of substance A in the flu
phase,ur and uθ are ther- and θ -velocity components
andD is the diffusion coefficient of substance A in t
solute. The velocity components are given as [9]

(2a)ur = −2

[
F1

r3
+ F2

r
+F3 + F4r

2
]

cosθ,

(2b)uθ = −
[
F1

r3 − F2

r
− 2F3 − 4F4r

2
]

sinθ,

where

(2c)F1 = − U

4F5

(
1− 2

a3

b3

)
,

(2d)F2 = − 3U

4F5
,

(2e)F3 = − U

2F5

(
1+ a3

2b3

)
,

(2f)F4 = − 3U

20F5

(
b3

a3

)
,

(2g)F5 =
(

1− a

b

)3(
1+ 6b

5a
+ 3b2

5a2 + b3

5a3

)
,

andU is the approaching fluid (bulk) velocity far from th
solid surface. A typical representation of the flow field d
scribed by Eqs. (2a) and (2b) is included in Fig. 1b in
form of streamlines.
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The axial symmetry of the mass transfer problem is
pressed by the following boundary conditions:

(3a)
∂cA

∂θ

]
θ=π

= 0, α < r � β,

(3b)
∂cA

∂θ

]
θ=0

= 0, α < r � β.

To ensure the continuity of concentration for any Pe
number, Coutelieris et al. [42] proposed the followi
boundary condition at the outer boundary of the cell:

(4a)cA(r = β, θ = π)= 1,

(4b)
∂cA

∂r

]
r=β

= 0, 0 � θ < π.

For high Peclet values, this boundary condition is co
pletely equivalent to the well-known Levich approach
unbounded fluids, given elsewhere ascA = 1 for r → ∞ or
r = β [18,22]. Figure 1b provides an idea of the extent of
concentration boundary layer surrounding the solid surfa

Three different cases for the adsorption of the solute u
the solid surface are considered. The first case corresp
to neutral solid surface, i.e., to the complete absence o
sorption. This can be described by the following bound
condition upon the solid surface:

(5)
∂cA

∂r

]
r=α

= 0, 0 � θ � π.

The second case corresponds to instantaneous adso
upon the solid surface and can be expressed as

(6)cA(r = α, θ)= 0, 0 � θ � π.

Finally, the third case refers to adsorption following
Langmuir type of isotherm and can be formulated as

(7)D
∂cA

∂r

]
r=α

= k

K
cs, 0 � θ � π,

whereK is defined by the Langmuir isotherm

(8)Θeq = Kcb

1+Kcb ,
andk is a reaction rate defined from the relation

(9)R(cs)= kcb(cmx − cs),
whereR(cs) is the overall adsorption rate given as a funct
of the surface concentrationcs , cb is the concentration o
the diluted mass in the neighborhood of the solid surfa
cmx is the maximum concentration attained when the sur
is completely covered by substance A, andΘeq is the ratio
of the covered to the total surface, defined as

(10)Θeq = cs

cmx
.

The adsorption efficiency of a grain in cell is defined
the ratio of the rate that the solute is adsorbed divided by
s

n

rate of the upstream influx. In general, it can be written a

(11)λ0 =
�
Ssphere

[−NAr ]r=a dSsphere

u∞cA,∞4πβ2
,

where[−NAr ]r=a is ther-component of the molar flux o
the collector surface. It can be easily shown that

(12)λ0 = a2

4πβ2

π∫
0

sinθ

(
∂(cA/cA,∞)
∂(r/α)

)
r=α

dθ.

Obviously, the boundary value problem of different
equation (1) with boundary conditions given by Eqs. (
and (3b), Eqs. (4a) and (4b), and Eq. (5) results in a unif
concentration profilecA(r, θ) = 1 for any r- andθ -values.
To solve the instantaneous or Langmuir adsorption probl
described by Eqs. (1), (3a) and (3b), (4a) and (4b), and
or (7), a nonuniform finite-difference scheme has been
ployed. For these cases, the value ofλ0 can be calculated
once ther-component of the concentration gradient up
the surface is known by using a modified Newton–Co
numerical method with adjustable step for the integrat
The presently adopted numerical scheme has been valid
against the adsorption efficiency values computed by Co
lieris et al. [42] for spheroidal geometry. Indeed, excell
agreement is obtained with the results of [42] when the
ratio of either the prolate or the oblate spheroidal absorb
set to unity.

3. Solution of the flow and mass transfer problem
in spherical particle assemblages

To define a realistic domain for the solution of the flo
and mass transfer problem, a porous medium is constru
in the form of a spherical particle assemblage. Specific
the representation of the biphasic domains under cons
ation is achieved by the random deposition of spheres
given radius in a box of specified length. The structure
digitized and the phase function (equal to zero for solid
unity for the pore space) is determined to obtain the spec
porosity (see Fig. 2a for a sample medium ofε = 0.7243).
The size of the digitized domains is 102×102×102 and the
length of the simulation box is ten times the sphere radiu

The creeping flow of a Newtonian incompressible flu
within the pore space of the medium is described by
Stokes equation coupled with the continuity equation,

(13a)µ∇2v = ∇p,
(13b)∇ · v = 0,

whereµ is the fluid viscosity,v is the local (interstitial)
fluid velocity, andp is the local pressure. The bounda
conditions forv are spatial periodicity and no-slip at the su
face of the solid unit elements. In this work, the numeri
solution of Eqs. (13a) and (13b) is achieved with the
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Fig. 2. Stochastically constructed 3-D sphere assemblage forε = 0.7243 (a)
and streamlines in a representative 2-D cut (b).

of a finite-difference scheme in conjunction with the art
cial compressibility relaxation algorithm (see [43–45]). T
pore space is discretized through a marker-and-cell (M
mesh with the pressure defined at the center of the
and the velocity components defined along the corresp
ing face boundaries. The resulting linear system of eq
tions is solved by the successive over-relaxation met
The present numerical scheme for the determination o
velocity field has been used and validated by the presen
thors in [45] where the calculated permeability of a rand
sphere pack was found in excellent agreement with that
dicted by the Blake–Kozeny relation [46]. For visualizat
purposes, the flow field (streamlines) calculated in a re
sentative 2-D cut of the sphere assembly is shown in Fig

The time-dependent mass transport of a passive solu
the medium is described by the convection–diffusion eq
-

-

tion (to be solved using the velocity field computed fro
Eqs. (13a) and (13b)):

(14)
∂cA

∂t
+ ∇ · (vcA)=D∇2cA .

The three different adsorption modes employed abov
the sphere-in-cell model, i.e., Eqs. (5)–(7), are also c
sidered at the present fluid–solid interfaces. The equa
describing the boundary value problem are discretized u
finite differences with an upwind numerical scheme wh
the type (forward or backward) of the discretization of
local first derivatives in any direction is chosen depending
the actual direction of the velocity component in every lo
tion in the domain. This approach is known to ensure c
vergence up to moderate Peclet values. The resulting li
systems of equations are solved using the SOR techn
Finally, the adsorption efficiency is determined as

(15)λ0 =
�
Soutlet

cAu · ndS�
Sinlet

cAu · ndS
.

The validity of the solution scheme for the mass trans
problem of Eq. (14) is checked in the limiting case of a p
odic array of spheres with radiusR, which is fed atx = 0 by
a concentration pulse. The concentration profile with tim
the outlet (x = L= 51R/8) is then expressed as [47]

(16)c(t)= 1√
4πD∗t

exp

[−(L− ut)2
4D∗t

]
,

whereu is the averaged fluid velocity andD∗ the disper-
sion coefficient. Therefore, the dimensionless time (defi
by usingL2/D∗ as characteristic time) at which the ma
imum concentration is recorded at the outlet can be ea
calculated as

(17)tmax= (
√

1+ Pe2 − 1)

Pe2
,

wherePe = uL/D is the Peclet number.
The dispersion coefficient can be determined base

the approach of Salles et al. [48] and is found in this c
to beD∗ = 1.34D. Then, Eq. (17) givestmax = 0.047 for
Pe = 20, when the numerically calculated value is 0.048
shown in Fig. 3 where the outlet concentration is plotted
sus time. Note that the dimensionless time stepdt must be
small enough (< 10−5) to attain acceptable accuracy in t
calculations.

4. Results and discussion

In a first step, we wish to recall the calculated flow fie
in the sphere-in-cell model, resulting from Eqs. (2a) and (
(see Fig. 1b) as well as in a stochastically constructed sp
ical particle assemblage with porosityε = 0.7243, resulting
from the solution of the Stokes equations (13a) and (1
(see Fig. 2b). This visualization of the respective flow fie
allows for an appreciation of the differences between the
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Fig. 3. Outlet concentration profile forPe = 20 in a periodic array of
spheres.

(a)

(b)

Fig. 4. Spatial concentration profiles forPe = 15 and ε = 0.9 at three
different angular positions of the sphere-in-cell for instantaneous (a)
Langmuir-type (b) adsorption.

velocity fields that are used as input for the solution of
mass transfer problem in these geometries.

Figure 4 shows the spatial concentration profiles for s
stance A at different angular positions in a high-poros
sphere-in-cell model (ε = 0.9) for the cases of instantaneo
(a) and Langmuir-type (b) adsorption. The ratiok/K, ap-
pearing in Eq. (7), has been set to 1 and this value is u
everywhere in this study unless otherwise stated. The P
value is low (Pe = 15); however, it has been selected
t

be high enough to ensure the satisfaction of the cond
∂cA/∂r = 0 at r = β andθ = 0. A gradual decrease of th
concentration is observed for constantr as the angular pos
tion approaches the outlet because of the shape and ext
the concentration boundary layer (see Fig. 1b). Theref
the possibility for substance A to be captured by the s
surface becomes lower with the angular position, altho
the accessibility of the solid surface is in general high du
the rather diffusive character of the flow (low Peclet). In g
eral, higher concentration gradients at any radial and ang
position are found for the case of instantaneous adsorp
compared to those for Langmuir-type adsorption, as the
face concentration,cA(α, θ), is much higher in the secon
case, taking its higher value at the impact point and decr
ing monotonically asθ tends toπ .

The dependence of the adsorption efficiency on the Pe
number for instantaneous (a) and Langmuir-type (b)
sorption modes and for several porosities (ε = 0.9883,ε =
0.8136, andε = 0.7243) is presented in Fig. 5 for the spher
in-cell model. In general, higher efficiency is found for i
stantaneous adsorption compared to the Langmuir typ
the concentration gradients are lower in the latter case
deed, the concentration on the solid surface attains in
case of Langmuir type of adsorption non-zero values, ren
ing the overall driving forcecA(β, θ)− cA(α, θ) smaller. It
is also evident that as porosity decreases, higher efficien
are found for both adsorption modes as the available ads
ing mass of solid increases. A sharp decline of the adsorp
efficiency is observed at lowPe with a smoother decrease f
Pe larger than about 20 in the case of Langmuir adsorp
(for all porosities in Fig. 5b). This general trend of efficien
with Pe is expected, as the more convective flows (incre
ing Peclet) tend to prevent substance A from being capt
by the solid surface. Interestingly, in Fig. 5a (instantane
adsorption) this sharp decline behavior holds only for
very large porosity. It seems that the larger concentra
gradients close to the solid surface in this case (comp
to Langmuir adsorption) compensate partially for the c
vective character of the flow and the reduction of efficien
with increasing Peclet is considerably smoother in Fig.
for the smaller porosity values (in fact, one needs Peclet
ues larger than 50 to start obtaining efficiencies lower t
unity for ε < 0.9 in Fig. 5a).

The discrete points in Fig. 5c represent the experime
data of Wilson and Geankoplis [49] forε = 0.7 (the highest
porosity used in their experiments). As these authors hav
fact measured the overall Sherwood number,Sh, defined in
the sphere-in-cell geometry asSh = αk0/D, wherek0 is the
overall mass transport coefficient, we had to transform
adsorption efficiency,λ0, to allow for comparison with the
predictions. Starting from the definition of adsorption e
ciency in Eq. (11), the numerator (r-component of the mola
flux on the adsorbing surface) can be expressed throug
use of the mass transfer coefficient ask0&CSsphere. This
leads after some algebraic manipulations to the follow
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Fig. 5. Adsorption efficiency of the sphere-in-cell model as a function
Pe for various porosities: instantaneous (a) and Langmuir type (b) ad
tion. In (c) the efficiencies calculated for instantaneous (solid line)
Langmuir-type (dashed line) adsorption (forε = 0.7243) are compared to
experimental data (discrete points [46]).

linear relation between the overall Sherwood number andλ0,

(18)Sh = λ0
Pe

(1− ε)
R

L

cin

〈c〉 ,

wherecin is the inlet concentration and〈c〉 is the known
average concentration of substance A, respectively. B
on this, Fig. 5c compares the adsorption efficiencies
culated for instantaneous and Langmuir-type adsorp
mechanisms in the sphere-in-cell with the above-mentio
experimental data. As the adsorption mechanism in the
periments is not clearly known, the agreement betw
predictions and experimental data can be considered as
ficient. In fact, one could vary the ratiok/K of Eq. (7) until
a full match between computed and measured efficien
-

(a)

(b)

Fig. 6. Spatial distribution of the concentration of substance A within a
cut of the 3-D sphere assemblage for instantaneous (a) and Langmui
(b) adsorption (flow inlet is on the left side of the images; darker a
correspond to higher concentrations).

is achieved. We do not pursue this exercise further her
there is no information on experimentalk/K values.

Turning to the 3-D spherical particle assembly, the s
tial distribution of the concentration, obtained numerica
for Pe = 20 andε = 0.7243 along the flow direction, i
presented in Fig. 6 where a 2-D cut of the stochastically c
structed medium is visualized for both instantaneous (a)
Langmuir-type (b) adsorption. The concentration is hig



F.A. Coutelieris et al. / Journal of Colloid and Interface Science 264 (2003) 20–29 27

ction
ad-
and

ses
per
. In

s
em

tion
clet
one
g. 5
in-
,
ighe

be
of a

im-
ta is

for
if-

can
on-
,
r

ss
; i.e.,

be-
-cell
so-
ares
ch-
is
tical
h-
the

ma-

e of
ical
de-

er is
as
-

flow
ox-
us
. 9b
-
d to

w
sem-

ucted
d in-

ished
(a)

(b)

(c)

Fig. 7. Adsorption efficiency of the 3-D sphere assemblage as a fun
of Pe for various porosities: instantaneous (a) and Langmuir-type (b)
sorption. In (c) the efficiencies calculated for instantaneous (solid line)
Langmuir-type (dashed line) adsorption (forε = 0.7243) are compared to
experimental data (discrete points [46]).

on the left side of the images (inlet) and gradually decrea
along the medium in a manner that is significantly stee
for the instantaneous than for Langmuir-type adsorption
addition, the adsorption efficiency for several porosities (ε =
0.9883,ε = 0.8136, andε = 0.7243) and Peclet numbers i
calculated by the full-numerical scheme in the sphere ass
bly for instantaneous (a) and Langmuir-type (b) adsorp
and presented in Fig. 7. The effects of porosity and Pe
on the adsorption efficiency are the same as those menti
above when discussing the sphere-in-cell results of Fi
(higher efficiencies correspond to lower porosity while
creasing Peclet numbers lead to lowerλ0 values). Moreover
the consideration of instantaneous adsorption leads to h
values of the adsorption efficiency at the same Peclet num
and porosity than those calculated under the assumption
-

d

r
r

Fig. 8. The effect of the ratiok/K on the adsorption efficiency.

Langmuir-type adsorption. Finally, it must be noted that s
ilar agreement between predictions and experimental da
shown in Fig. 7c as in the sphere-in-cell case of Fig. 5c.

The influence of the ratiok/K, defined in Eq. (7), on
the computed adsorption efficiency is presented in Fig. 8
Pe = 20 andε = 0.8136. As this ratio increases, a sign
icant enhancement ofλ0 is observed because higherk/K
corresponds to lower ratios of the covered surface,Θeq. This
in turn corresponds to lower surface concentrations as it
be easily shown with the use of Eq. (10) and to higher c
centration gradients, i.e., to higherλ0. On the other hand
the increment of the ratiok/K can be viewed as a highe
adsorption rate for a givenK value and, thus, less ma
of the substance A can escape from the solid surfaces
higherλ0 values result.

It is interesting to consider the relative agreement
tween the results produced by considering the sphere-in
approximation and those obtained from the numerical
lution in the 3-D sphere assemblages. Figure 9a comp
the respective adsorption efficiencies for porosity approa
ing unity (ε = 0.9883) and instantaneous adsorption. It
obvious that the agreement is perfect as the semi-analy
sphere-in-cell model is very close to reality for such hig
porosity values. When lower porosities are considered,
fundamental assumptions of the sphere-in-cell approxi
tion are less and less satisfied [8,9]. Indeed, in the lowPe
regime that is characterized by the gradual dominanc
the diffusive over the convective terms, the semi-analyt
approach of the sphere-in-cell model cannot adequately
scribe the mass transport process, as the diffusion lay
very thick (larger than the cell itself) and tends to infinity
Pe → 0. On the other hand, asPe increases, the flow be
comes more and more convective and the analytical
field of the sphere-in-cell is not any more a sufficient appr
imation of the actual flow field in real granular media, th
leading to discrepancies of the model. As shown in Figs
and 9c, however, forε = 0.8136 andε = 0.7243 the agree
ment between the two approaches remains from very goo
satisfactory in the range ofPe considered. This is someho
expected since both the sphere-in-cell and the sphere as
blage geometries used in the present study are constr
such that they are characterized by the same porosity an
ternal (adsorbing) surface area. This has been accompl
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Fig. 9. Comparison between adsorption efficiency in sphere-in-cell
sphere assemblies for different porosities.

by selecting the proper radius and population numbe
spheres in the assemblage. Of course, it is possible to
struct several sphere assemblages of the same porosi
with varying sphere radius and population number and th
fore with different internal surfaces. Figure 10 shows h
this affects the calculated adsorption efficiency for insta
neous and Langmuir adsorption. In the figure, the horizo
axis represents the internal surface ratio, which change
different media are considered. The case of ratio equ
unity corresponds to the results discussed so far in this w
Evidently,λ0 is not influenced significantly under instan
neous adsorption conditions by the change in the med
This is again due to the high concentration gradients
vailing in this case and masking in essence the effec
the internal surface variation. However, in the more rea
tic Langmuir type of adsorption a very pronounced influe
onλ0 is observed, implying that caution should be exerci
when using the sphere-in-cell model for the determinatio
-
t

s

(a)

(b)

Fig. 10. The effect of using sphere assemblages with constant porosit
varying internal surface area on adsorption efficiency.

adsorption efficiency in granular media. Matching of por
ity alone is not sufficient for a reliable result in that respe

5. Conclusions

Analytical and numerical investigations for the ma
transport from a moving Newtonian fluid to an assembl
of spherical solid absorbers are presented forPe < 102 and
relatively large porosities (ε > 0.7). At higherPe the overall
problem is amenable to analytical treatment with suffic
accuracy in the simplified geometry of the sphere-in-
model as the flow field therein can be taken as a good en
approximation of the real one and certain diffusive ter
can be safely neglected. In the present work, we focu
the low to moderatePe regime where the sphere-in-cell a
proach permits the analytical determination of the velo
field, which is then used for the solution of the convectio
diffusion equation within the domain defined by the c
In addition, we attempt a numerical solution of the fl
field and the corresponding convection–diffusion prob
in the more realistic geometry of stochastically construc
3-D sphere assemblages. In all cases, we consider (a
adsorption, (b) instantaneous adsorption, and (c) Langm
type adsorption. The adsorption efficiency is calculated
a function ofPe and porosity and the adequacy of the s
plified semi-analytical approach is tested against the pre
tions from the numerical study in sphere assemblages.
found that higher adsorption efficiencies correspond to lo



F.A. Coutelieris et al. / Journal of Colloid and Interface Science 264 (2003) 20–29 29

orp
the

un
rall,
ode

rge
tual
rea)
a
of

.

65.

215.
993)

h.

gle-

.
m-

3)

ad-

.
97)

i. 55

95)

16

r. 9

ley,

9.
porosity while increasing Peclet numbers lead to lowerλ0
values. Moreover, the consideration of instantaneous ads
tion yields higher values of the adsorption efficiency at
same Peclet number and porosity than those calculated
der the assumption of a Langmuir-type adsorption. Ove
the sphere-in-cell approach seems to be an adequate m
for relatively high-porosity media and moderate to la
Peclet values provided that a proper account of the ac
porous media properties (porosity and internal surface a
is taken. A simple match of porosity is not sufficient for
reliable estimation of adsorption efficiencies. The validity
the simplified geometry is less pronounced for lowPe where
diffusion is dominant.
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