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The mass transport problem from a Newtonian fluid to a swarm of prolate or oblate
spheroidal adsorbing particles under creeping flow conditions is considered here. The
spheroidal-in-cell model is used for the analytical description of the flow field within the
swarm. A realistic adsorption–reaction–desorption mechanism is used to describe the
adsorption of mass on the particle surface, instead of the assumption of instantaneous
adsorption that has been adopted previously. The convective diffusion equation accom-
panied by the appropriate boundary conditions is solved analytically for the case of high
Peclet numbers and numerically for the low ones. In both cases, analytical expressions for
the overall Sherwood number, the adsorption rate, and the mass transport coefficient were
obtained. It was found that the adsorption rate is higher for oblate shapes and for
diffusional, instead of convectional, environments. Finally, the assumption of instanta-
neous adsorption leads to values for the overall Sherwood number and the adsorption
efficiency that are 15–50% lower and 10–35% higher, respectively, than those obtained
by using the more realistic adsorption–reaction–desorption model. © 2004 American
Institute of Chemical Engineers AIChE J, 50: 779–785, 2004
Keywords: adsorption, mass transport, spheroid, diffusion, swarm

Introduction

Convective mass transport in swarms of particles is a com-
monly encountered process in a wide range of industrial and
scientific applications such as fluidized beds, separation pro-
cesses, catalytic and noncatalytic fluid–solid reactions, filters,
and so forth. Modeling of fluid flow and of physicochemical
processes that take place within particles swarms seems to
attract significant scientific interest.

Most of these models concerning creeping or laminar flow
within swarms of particles are based on the assumption of
spherical or/and cylindrical particles to achieve analytical so-
lutions (Happel, 1958; Kuwabara, 1959; Neale and Nader,

1974; Tien, 1989). These models are based on the representa-
tion of the overall solid mass of the swarm by a spherical or
cylindrical solid body, which is embedded in a spherical or
cylindrical liquid envelope, respectively. The ratio of the solid
volume to the volume of the liquid envelope represents the
solid volume fraction of the porous medium. The main advan-
tage of these models is that an analytical expression for the
stream function can be obtained demanding significantly
smaller effort than that needed for numerical investigations.
Such models apply to homogeneous swarms. In practice, a
tendency for channeling and/or “bubbling” through the
swarm disrupts complete homogeneity. In such cases, one
can address homogeneous (or nearly so) subregions of the
swarm separately.

In many applications, the particles or grains have shapes that
are closer to spheroidal than to spherical (Mou and Howe,
1997). The fluid flow problem within swarm of spheroidal
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particles has already been examined either numerically (Am-
mar and Hsieh, 1991; Epstein and Masliyah, 1972) or analyt-
ically (Dassios et al., 1994, 1995), producing accurate results
(Burganos et al., 1995). These models are useful in the study of
convective mass transport processes in swarms of particles.
The basic approach is that of Levich (1962), which applies to
mass transport from a fluid stream to a single sphere that
adsorbs mass instantaneously. This approximation, which is
based on the assumption of a very thin diffusion layer, is valid
only for highly convectional processes (Pe �� 1), and produces
analytical expressions for the concentration profile, the overall
Sherwood number, and the mass transport coefficient. Later
investigations extend Levich’s approach by considering mass
transport, dominated by convection, through swarms of spher-
ical particles (Pfeffer, 1964; Pfeffer and Happel, 1964; Tardos
et al., 1976). Analytical expressions for the overall Sherwood
number as a function of the porosity of the swarm were
obtained by using both the Kuwabara (1959) and Happel
(1958) formalisms for the sphere-in-cell model. Recently, an-
other extension of these models was presented by Coutelieris et
al. (1993), in which an analytical solution for the mass trans-
port problem within a swarm of spheroidal particles was ob-
tained for the case where convection dominates diffusion.

Some studies that consider diffusion-dominated [Pe � O(1)]
processes in swarms have also been presented. In this case, it
is not possible to obtain an analytical solution even for spher-
ical particles and, thus, numerical treatment is necessary
(Masliyah and Epstein, 1972; Prieve and Ruckenstein, 1974;
Spielman and Friendlander, 1974). In all these models, the
boundary conditions that are imposed in accordance with the
Levich approximation have been appropriately modified so as
to adequately describe slow convective mass transport in
sphere-in-cell models. Further modifications have been devel-
oped (Coutelieris et al., 1995; Song and Elimelech, 1992) to
ensure the continuity of both the concentration and the mass
flux on the boundaries.

In all the aforementioned models the particles were assumed
to adsorb mass instantaneously (Coutelieris et al., 1993, 1995;
Levich, 1962; Pfeffer and Happel, 1964; Song and Elimelech,
1992). It is obvious that the assumption of instantaneous ad-
sorption pertains to a very limited range of applications, given
that it is a rare physicochemical phenomenon. A more realistic
approach that is adopted here can be based on an adsorption–
heterogeneous reaction– desorption mechanism, which de-
scribes the adsorption of the diluted mass upon the solid
surface with high accuracy (Atkins and DePaula, 2001; Peters
et al., 1985; Suzuki and Smith, 1972; Weber and Chakravati,
1974). More precisely, it can be supposed that the solute is first
adsorbed on the solid surface, where a heterogeneous reaction
takes place and its products, which are supposed to be inactive
and of very low concentration, are desorbed into the fluid. The
adsorption is assumed to take place on vacant sites that are
normally distributed over the solid surface, whereas the overall
rate of the process is determined from basic thermodynamics
(Smith, 1981).

Theory

The creeping flow of a Newtonian fluid within a porous
medium consisting of spheroidal grains can be described by the
spheroid-in-cell model (Dassios et al., 1994), which is analo-

gous to the previously proposed sphere-in-cell Kuwabara
model (Kuwabara, 1959). According to the Dassios et al.
(1994) model, the swarm is represented by a solid kernel that
is enveloped by a liquid layer, the thickness of which is
adjusted so that the porosity of the model is equal to that of the
swarm. The flow field is given analytically in terms of an
infinite-series expansion (Dassios et al., 1994), the leading term
of which has been shown to be a satisfactory approximation
(Burganos et al., 1995). Using the leading term, the velocity
components for the prolate spheroid-in-cell having long semi-
axis a3 and semifocal distance � � �a3

2 � 1, are given in the
prolate coordinates system (�, �) by

u� �
�1

�2�sinh2� � sin2� sinh � sin �

��

��
(1a)

u� �
1

�2�sinh2� � sin2� sinh � sin �

��

��
(1b)

and the stream function is given by

���, � � �
�

D ��2G2�cosh �� � �3�5G4�cosh ���

G1�cosh ���
G1�cosh ��

� G4�cosh ��� � �4H2�cosh ���G2�cos �� (2)

where D, �2, �3, and �4 are �- and �-dependent coefficients
defined by Dassios et al. (1994) and Gn(x) and Hn(x) are the
Gegenbauer polynomials of the first and second kind, respec-
tively, of degree �(1/2) and of order n.

By assuming constant diffusivity, the governing equation for
the steady state mass transport of the solute A, under creeping
flow conditions (see Figure 1), can be written in dimensionless
form as

u	cA � Pe�1	2cA (3)

where u is the velocity vector and Pe is the Peclet number.
Equation 3 can be expressed in prolate spheroidal coordinates
as (Coutelieris et al., 1995)

Figure 1. Formulation of the mass transport problem for
prolate and oblate shapes.
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��
� u�

�cA

��
�

Pe�1

��sinh2� � sin2�


 ��2cA

��2 � coth �
�cA

��
�

�2cA

��2 � cot �
�cA

�� � (4)

This equation is to be integrated with the following boundary
conditions (see also Figure 1)

cA�� � ��, � � 	� � 1 (5a)

�cA

���
����

� 0 0 � � 
 	 (5b)

�cA

�� �
��	

� 0 �� � � � �� (5c)

�cA

�� �
��0

� 0 �� � � � �� (5d)

and

Pe�1

��sinh2�� � sin2�
��cA

���
����

� Rn 0 
 � 
 	 (5e)

The boundary condition described by Eqs. 5a and 5b was
proposed by Coutelieris et al. (1995) to ensure the continuity of
the concentration on the outer boundary of the cell for any
Peclet number. Equations 5c and 5d express the axial symme-
try that has been assumed for the system.

The last boundary condition describes a typical adsorption/
reaction/desorption mechanism for the component A on the
solid surface (Atkins and DePaula, 2001; Smith, 1981). Rn in
Eq. 5e denotes the overall adsorption rate, given by

Rn � kscAS
n (6)

where ks is the rate constant of the heterogeneous reaction on
the surface. The concentration of component A on the solid
surface, cAS, is calculated by solving the nonlinear equation

kscAS
n � �kA

d � kA
acA���, � � N�cAS � kA

acA���, � ��m � 0 (7)

The above equation correlates the hard-to-measure surface
concentration of A, cAS, with its concentration in the bulk phase
very close to the solid surface, cA(��, �) by considering the
balance for the active sites on the adsorbing surface. The terms
kA

a and kA
d denote the adsorption and desorption rate constants

of component A, respectively; �m is the concentration of the
vacant sites of the solid surface; and N is Avogadro’s number;
whereas n denotes the order of the heterogeneous reaction. In
general, only the cases of n � 0, n � 1, and n � 2 are of
practical interest, whereas zeroth order reactions have few
applications (Atkins and DePaula, 2001). Therefore, the
present investigation deals only with first- and second-order
heterogeneous reactions. Finally, it should be noted that, for

n � 2, the boundary condition 5e introduces nonlinearity in the
system and thus makes it necessary to use an iterative tech-
nique to obtain the solution.

The case of high Peclet numbers

For the case of high Peclet numbers (Pe �� 1), the concen-
tration boundary layer is very thin compared to the local radius
of curvature of the particle, and, thus, the curvature term coth
�cA/�� can be neglected along with the tangential diffusion
terms �2c/��2 and cot �c/��, which have been shown to be
negligible for high Peclet values (Coutelieris et al., 1995). With
these simplifications, Eq. 3 becomes parabolic on � and it can
be solved analytically in a manner quite similar to that of
Coutelieris et al. (1993), providing the following concentration
profile in the fluid phase

cA� z� � c2 �
0

z

e��4/9�t3dt � c3 (8)

where

z � �3 �EPe

4D�sinh2�� � 1�
�f��� (9)

The integration constants c2 and c3 are to be calculated by
solving the nonlinear system

�3 E

4�5Pe2

f���

�sinh2�� � sin2�
c2 � Rn�c3� � 0 (10a)

1.17c2 � c3 � 1 (10b)

where E and f(�) are terms defined in Coutelieris et al. (1993)
as follows:

E �
�2

2
�

15�3

4
cosh2���� �

3�3

4

�
�4

4
ln

cosh���� � 1

cosh���� � 1
�

�4

2

cosh����

cosh2���� � 1
(10c)

f�� � �
�3 2 sin �

�3sin � cos � � �
(10d)

It should be noted that coefficient c3 represents the concen-
tration of A in the fluid very close to the solid surface according
to the relation

lim
�3��

cA � lim
z30

cA � c3 (11)

Some mathematical manipulations lead to the following
expressions for the overall Sherwood number Sho
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Sho �
3.383

2	�1 �
a3

�
sin�1

�

a3
� �3EPe �

0

2	

f���d� (12)

whereas the overall adsorption efficiency o, defined as the
ratio of the rate of the adsorption over the rate of the upstream
flux, is given by

o �
1.26

�2sinh2��
�3 E

Pe �
0

2	

c2f���d� (13)

Note that the overall adsorption efficiency depends on the
adsorption–reaction–desorption phenomena that take place on
the solid surface, whereas the overall Sherwood number is
independent of them because of the high concentration gradi-
ents caused by convection.

The corresponding expressions for the case of oblate sphe-
roids-in-cell are similar to those of the prolate case, presenting
differences only in the following equations

�3 E

4�5Pe2

f���

�cosh2�� � sin2�
c2 � Rn�c3� � 0 (10a�)

Sho �
3.383

2	�1 �
a3

2

2�
ln

1 � �

1 � ��
�3EPe �

0

2	

f���d� (12�)

o �
1.26

�2cosh2��
�3 E

Pe �
0

2	

c2f���d� (13�)

The case of moderate and low Peclet numbers

In this case, Eq. 4 should be solved without any simplifica-
tion and thus a numerical approach is indispensable for the
determination of the concentration cA. A finite-differences dis-
cretization scheme was used for the integration of Eq. 4 along
with Eqs. 5a–5e. The grid spacing is chosen to be nonuniform
because it has been proved that appropriately nonuniform dis-
cretization performs better than the equal-spaced one (Sun and
Levan, 1995). The overall Sherwood number Sho for the case
of prolate spheroids is given by

Sho �
�� sinh ��

1 �
a3

�
sin�1

�

a3

�
0

	
sin ���cA

�� �
����

cA���, �� � cA���, ��
d� (14)

and for the case of oblate spheroids by

Sho �
�� cosh ��

1 �
a3

2

2�
ln

1 � �

1 � �

�
	

0
sin ���cA

���
����

cA���, �� � cA���, ��
d� (14�)

Consequently, the overall adsorption efficiency o is given by

o �
�2� sinh ��

Pe�2sinh2��
�

0

	

sin ���cA

���
����

d� (15)

and

o �
2� sinh ��

Pe�2cosh2��
�

0

	

sin ���cA

���
����

d� (15�)

for the cases of prolate and oblate spheroids, respectively.

Results and Discussion

Figure 2 shows the concentration profiles for component A
at different angular positions for the cases of prolate (a) and
oblate (b) spheroids-in-cell, in the case of the first-order het-
erogeneous reaction (n � 1). In the case of high Peclet numbers
(say, Pe � 1000), the concentration presents higher slopes for
the case of prolate spheroids than that for oblate ones, given
that it has also been observed previously for the case of
instantaneous adsorption (Coutelieris et al., 1993). In general,
the concentration approaches its bulk value at small distances
from the solid surface. The dashed lines in Figure 2 denote the
concentration profiles for a low Pe value (Pe � 15), selected so
as to ensure that the condition �cA/�� � 0 at � � �� and � �
0 holds (Coutelieris et al., 1995). A sharper decrease of the
concentration gradients towards the solid surface is observed,
compared with that for the case of high Peclet numbers, be-
cause diffusion dominates convection as Pe becomes small. An
interesting weakness of the Levich approach arises near � � ��

within the tail region (� 3 	), where the Levich model gives
very small concentration values, whereas these values in reality
might be comparable to the bulk value. Levich’s approach fails
to predict acceptable concentration values in this area because
the fundamental assumption of a very thin boundary concen-
tration layer is not valid in this region even for high Pe values.
Finally, it should be noted that the concentration on the surface,
cA(��, �), presents maximum at the cell-frontal point (� � ��,
� � 0) and a monotonic decrease is observed as � tends to 	
for the case of prolate spheroids and high Pe values. The
maximum concentration value appears near the equator for the
case of oblate spheroids, where the thickness of the diffusion
film becomes minimum (Coutelieris et al., 1995). This behav-
ior is not observed for small Pe values because in such cases
surface concentration values are much larger than those of the
large Pe case, and so the accessibility of adsorbent to the solid
surface is sufficiently large to produce nearly uniform concen-
tration profiles for the adsorbed mass.

The effect of the spheroidal shape on the overall Sher-
wood number is presented in Figure 3 for the case of high (a)
and low (b) Peclet values. A monotonic decrease of Sho,
with increasing aspect ratio a3, is observed for all cases
because prolate spheroids present higher diffusional resis-
tance than that of oblate ones, as reported by Coutelieris et
al. (1993). Oblate spheroids present larger impact surface
than that of prolate ones, and thus their capacity for adsorp-
tion is higher. This advantage of oblate shapes becomes very
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weak in the case of small Pe values because almost all the
parts of the adsorbing solid surface become active as diffu-
sion becomes dominant. The overall Sherwood number de-
pends appreciably on the order of the heterogeneous reac-
tion in the case of small Peclet values, unlike the case of
large ones, because the concentration gradients become less
significant. In this case, a decrease of Sho is observed when
the reaction is of second-order (rather than of first-order)
because a higher reaction order causes lower concentration
gradients and larger amounts of adsorbed mass. The overall
Sherwood number can be 15–50% higher, depending on Pe,
the shape, the porosity, and the order of the reaction, com-
pared to the values obtained assuming instantaneous adsorp-
tion for either high or low Peclet values (Coutelieris et al.,
1993, 1995). This occurs because the concentration on the
solid surface attains nonzero values and, thus, the difference
cA(��, �) � cA(��, �) becomes almost nil for some �-values.
The decrease of this driving force is significantly larger than
the decrease of the concentration gradients, which is ob-

served when a realistic adsorption process is assumed in-
stead an instantaneous one.

The dependency of the overall adsorption efficiency on
the Peclet number for both prolate (a) and oblate (b) shapes
is given in Figure 4a and 4b, where the heterogeneous
reaction is assumed to be either first-order (n � 1) or
second-order (n � 2). A significant decrease of the adsorp-
tion efficiency occurs as Pe increases. The values for the
overall adsorption efficiency obtained using the instanta-
neous adsorption model are 10 –35% higher than those ob-
tained here because of the higher concentration gradients
that instantaneous adsorption generates.

Figure 5 shows the overall mass transport coefficient ko as a
function of the aspect ratio a3, for constant volume (a) and for
constant surface (b) of the solid spheroid for a large (Pe �
1000) and a medium-to-small (Pe � 15) Peclet value by
assuming first-order reaction. The solid volume fraction of the
cell was kept at a fixed value (� � 0.1). The overall mass
transport coefficient is chosen to express the rate of mass
transfer because Sho depends on the short semiaxis (character-
istic length) of the spheroid, which cannot be kept constant for
both the iso-surface and the iso-volume case. Given a high Pe
value, the consumption of the component A on the solid
surface is significantly larger for swarms that consist of oblate
spheroids than those consisting of spheres or prolate spheroids.

Figure 2. Concentration profiles for prolate (a) and ob-
late (b) spheroidal shapes for a high and a low
Peclet number at three different angular posi-
tions.

Figure 3. Dependency of the overall Sherwood number
on the axis ratio of the spheroid for a high (a)
and a low (b) Peclet number.
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In the constant volume case, in particular, the mass transfer rate
is almost doubled by changing the aspect ratio from 2 to 0.5,
whereas its effect on ko is less drastic but still significant when
the surface area of the solid spheroid is kept constant. Smaller
Pe values give significantly smaller mass transfer coefficients,
which have a smoother behavior as the aspect ratio varies,
compared with those of large Pe values.

Conclusions

The problem of mass transfer from a moving Newtonian
fluid to a swarm of prolate and/or oblate stationary spheroi-
dal adsorbing particles under creeping flow conditions is
solved using a spheroidal-in-cell model. The flow field
through the swarm was obtained by using the spheroid-in-
cell model proposed by Dassios et al. (1994). The leading
term of the series expansion of the stream function is used to
approximate the velocity components. An adsorption–
reaction– desorption scheme is used to provide the boundary
conditions on the surface of the spheroid. The convective
diffusion equation is solved analytically for the case of large
Peclet numbers, and the overall Sherwood number, the ad-
sorption rate, and the mass transport coefficient were ob-
tained in analytical form. For the case of small Pe values a

finite-difference scheme with nonuniform grid is used to
solve the problem numerically. It was found that the mass
transfer rate is higher for oblate spheroids-in-cell than it is
for spheres-in-cell and prolate spheroids-in-cell, assuming
constant volume and surface area especially for large Peclet
values. Consequently, the oblate shape offers a significant
advantage over that of spheres and prolate spheroids, espe-
cially for large Pe values, in which case convection is
dominant. This advantage weakens considerably for small
Pe values when diffusion becomes dominant. Taking into
account the finite rates of adsorption, reaction, and desorp-
tion gives an overall Sherwood number 15–50% smaller
than that obtained by assuming instantaneous adsorption and
reaction.
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Notation
Latin letters

a1, a3 � semiaxes of the solid spheroid

Figure 4. Influence of the Peclet number on the adsorp-
tion efficiency for prolate (a) and oblate (b)
spheroids-in-cell.

Figure 5. Dependency of the mass transport coefficient
on the axis ratio for spheroids-in-cell of the
same volume of the solid phase (a) and of the
same solid surface area (b) and the same po-
rosity.
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c2, c3 � coefficients from the integration of Eq. 8
cA � concentration of component A

cAS � concentration of component A on the solid surface
D � determinants defined in Dassios et al. (1994)
E � coefficient defined by Coutelieris et al. (1993)

f(�) � function defined by Coutelieris et al. (1993)
ks � rate constant of the heterogeneous reaction

kA
a , kA

d � adsorption and desorption rate constants
N � Avogadro’s number
n � order of the heterogeneous reaction

Pe � Peclet number (� U�a1/DAB), where U� is the approach
velocity and DAB is the diffusion coefficient

Rn � overall adsorption rate
Sho � overall Sherwood number (� koa1/DAB), where ko is the

overall mass transport coefficient and DAB is the diffusion
coefficient

u � fluid velocity vector
u�, u� � �- and �-components of the fluid velocity, respectively

z � dependent variable defined by Eq. 9

Greek letters

� � semifocal distance
� � spheroidal coordinate

��, �� � values of � in the inner and the outer spheroidal surface,
respectively

� � spheroidal coordinate
o � overall adsorption efficiency

�2, �3, �4 � coefficients defined in Dassios et al. (1994)
�m � site concentration (� vacant sites per unit surface)
� � stream function
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