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Low to moderate Peclet mass transport in assemblages of spherical particles
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Abstract

A theoretical model and the associated numerical simulations for the mass transport from a moving Newtonian fluid to an assemblage of

spherical solid absorbers are presented here. In particular, we present results from the numerical solution of the convection–diffusion equation in

the simplified sphere-in-cell geometry and in stochastically constructed 3-D spherical particle assemblages for low to moderate Peclet numbers

(Pe<100) and relatively high porosities (e >0.7). A realistic adsorption/reaction/desorption mechanism is used to describe the adsorption of

diluted mass on the particles surface as opposed to the assumption of instantaneous and Langmuir-type adsorption that has been adopted in

previous works. We also attempt to compare the effect of considering different sorption mechanisms in terms of adsorption efficiency. In all cases,

the adequacy of the simplified sphere-in-cell approach is tested against the predictions from the numerical study in sphere assemblages. It is found

that higher adsorption efficiencies correspond to lower porosities while increasing Peclet numbers lead to lower k0 values. Finally, it is shown that

the assumption of instantaneous adsorption leads to severe overestimation of the adsorption efficiency in comparison with that obtained by using

the more realistic adsorption–reaction–desorption model.

D 2005 Elsevier B.V. All rights reserved.
Keywords: Granular media; Peclet number; Adsorption; Flow; Mass transfer
1. Introduction

The mass transport within assemblages of spherical particles

is of great importance in a variety of industrial and

technological applications [1,2]. This holds especially in the

case of low Reynolds number flow, where analytical solutions

can be obtained for the flow field and the mass diffusion and/or

adsorption process in simplified geometries [3–5]. On the

other hand, significant effort has been put in numerical

solutions of the Stokes equations in realistic reconstructions

of porous media (including spherical particle assemblies),

usually with reference to material transport properties predic-

tions [6,7]. Additionally, several theoretical investigations have

been presented for the relevant transport problems concerning

either high Peclet values and therefore analytical approaches

[8–12], or low ones where numerical simulations are necessary

[13–19].
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In the aforementioned works the particles were assumed to

adsorb mass instantaneously [8,9,12,14]. It is obvious that the

approach of instantaneous adsorption pertains to a very limited

range of applications, as it is a quite rare physicochemical

phenomenon. Recently, a rather detailed model considering

also Langmuir-type adsorption for the spherical grains of the

assemblage has been presented by Coutelieris et al. [19]. An

extended version of this model is adopted here to simulate

adsorption – heterogeneous reaction – desorption mechan-

isms, which can describe the sorption process of the diluted

solute upon the solid surface with high accuracy [20–23].

More specifically, it can be considered that the solute diluted in

the bulk phase is initially adsorbed by the solid surface where a

heterogeneous reaction takes place and its products, which are

assumed to be inactive and of very low concentrations, are

again desorbed in the bulk phase. The adsorption is assumed to

occur due to vacant sites that are normally distributed over the

surface area while the whole process is determined by an

overall rate according to thermodynamics [24].

In the present work, we compare the semi-analytical

approach, based on the analytical solution of the flow-field
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Fig. 1. The sphere-in-cell model.

F.A. Coutelieris et al. / Powder Technology 159 (2005) 173–179174
and the subsequent numerical solution of the mass transport

problem in the simplified sphere-in-cell geometry, with the

numerical simulations for the creeping flow-field in stochas-

tically constructed 3-D sphere assemblages and the subsequent

numerical solution of the convection–diffusion problem in this

realistic geometry. In all cases, relatively low Peclet values are

considered while the selected porosities vary from very large

values (close to unity) to intermediate ones. As already

mentioned, a realistic adsorption/heterogeneous reaction/de-

sorption mechanism is employed to describe the sorption

process on the particle surface as an alternative to the simpler

case of instantaneous or Langmuir-type adsorption that have

been studied previously [19]. The adsorption efficiency is

calculated in all cases and appropriate comparisons are made in

that respect too.

2. Solution of the flow and mass transfer problem in the

sphere-in-cell geometry

The sphere-in-cell geometry has been repeatedly used as a

simple model for the representation of the actual complicated

geometry of the pore space in spherical particle assemblages

and the approximation of the flow-field therein and is

graphically presented in Fig. 1. The governing equation for

the steady state mass transport in the fluid phase flowing within

the model can be written in spherical coordinates as:
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where cA is the concentration of substance A in the fluid phase,

ur and uh are the r-and h-velocity components, which can be

expressed according to Kuwabara’s approach [4] as:
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and UV is the approaching fluid (bulk) velocity far from the

solid surface. D in Eq. (1) is the diffusion coefficient of

substance A in the solution. The above equation is to be

integrated along with the following boundary conditions [19]:

cA r ¼ b; h ¼ pð Þ ¼ cA;V ð3aÞ

BcA

Br

�
r¼b

¼ 0; 0Vh < p ð3bÞ
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D
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The conditions described by Eqs. (3a) and (3b) have been

proposed by Coutelieris et al. [14] in order to ensure the

continuity of the concentration upon the outer boundary of the

cell for any Peclet number. Furthermore, Eqs. (3c) and (3d)

express the axial symmetry inherent to the sphere-in-cell

geometry. The last boundary condition describes the continuity

of the mass fluxes on the solid surface while the overall rate Rn

is dependent on the type of sorption process considered. For a

typical adsorption/heterogeneous reaction/desorption mecha-

nism for the component A upon the solid surface [20,24], Rn is

given as:

Rn ¼ ksc
n
AS ð4Þ

where ks is the rate constant of the heterogeneous reaction

of order n upon the surface. By considering a three step

(adsorption/heterogeneous reaction/desorption) concept of the

sorption process involving the theory of active (vacant) sites

[20], and by assuming very rapid (instantaneous) desorption

for the chemically neutral desorbed product, the equality of



Fig. 2. Stochastically constructed 3-D sphere assemblage for e =0.7243.
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the rates per step corresponds to a non-linear equation for

the concentration of component A, cAS, upon the solid

surface:

ksc
n
AS þ kd þ kacA a; hð ÞN½ �cAS � kacA a; hð Þnm ¼ 0 ð5Þ

where ka and kd denote the adsorption and desorption rate

constants of component A, respectively, nm is the concentra-

tion of the vacant sites of the solid surface and N is Avogadro’s

number. In physical terms, the first term of the above equation

represents the molar flux due to reaction, the second one

corresponds to the mass flux approaching the surface while the

last one describes the flux due to adsorption. Overall, the

above equation correlates the hard-to-measure surface concen-

tration of A, cAS, with its concentration in the bulk phase very

close to the solid surface, cA(a,h) by considering the balance

for the active sites on the adsorbing surface. In general, only

the cases of n=0, n =1 and n =2 are of practical importance

but zeroth order reactions are of very limited applications [20].

Therefore, the present investigation deals only with first (n=1)

and second (n =2) order heterogeneous reactions. Finally, it

should be stressed that the boundary condition (3e) implies

non-linearity in the whole approach and, therefore, an iterative

technique is necessary to obtain the numerical solution of

Eq. (1).

The adsorption efficiency of a grain in cell, ko, is defined by

the ratio of the rate with which the solute is sorbed divided by

the rate of the upstream influx and can be written as:

ko ¼
a2

4pb2

Z p

0

sinh
B cA=cA;V
� �
B r=að Þ

��
r¼a

dh: ð6Þ

To solve the boundary value problem described above

(using the Kuwabara expressions for the velocity components),

a non-uniform finite-difference scheme has been employed.

For these cases, the value of ko can be calculated once the r-

component of the concentration gradient upon the surface is

known by using a modified Newton–Cotes numerical method

with adjustable step for the integration.

3. Solution of the flow and mass transfer problem in

spherical particle assemblages

In the previous section, a simplified geometry (sphere-in-

cell) is employed to obtain numerical solutions of Eq. (1). Here

we consider digitally constructed spherical particle assem-

blages as a more realistic geometry for the solution of the flow

and mass transfer problem. The representation of the biphasic

domains under consideration is achieved by the random

deposition of spheres of a given radius in a box of specified

length. The structure is digitized and the phase function (equal

to zero for solid and unity for the pore space) is determined in

order to obtain the specified porosity (see Fig. 2 for a sample

medium of e =0.7243). The size of the digitized domains is

102�102�102 and the length of the simulation box is ten

times the sphere radius. Details of the efficient algorithm

(ballistic deposition) used for the stochastic construction of the

porous medium can be found in [19].
To obtain the flow-field within such an assemblage for the

creeping flow of a Newtonian incompressible fluid, the Stokes

equation (momentum conservation) coupled with the continu-

ity equation (mass conservation) should be integrated along

with boundary conditions imposing spatial periodicity and no-

slip at the surface of the solid elements of the domain (see [19]

for details). The consequent numerical solution is achieved

with the use of a finite-difference scheme in conjunction with

the artificial compressibility relaxation algorithm [25–27]. The

pore space is discretized through a marker-and-cell (MAC)

mesh with the pressure defined at the center of the cell, and the

velocity components defined along the corresponding face

boundaries. The resulting linear system of equations is solved

by the successive over-relaxation method.

Following the determination of the velocity field, the time-

dependent mass transport of a passive solute in the stochasti-

cally constructed medium is described by the convection–

diffusion equation:

BcA

Bt
þ uIlcA ¼ Dl2cA: ð7Þ

The adsorption mechanism employed above in the sphere-

in-cell model, i.e. Eqs. (3e),(4),(5), is also considered at the

fluid-solid interfaces of the reconstructed assemblage. The

equations describing the boundary value problem are discre-

tized using finite differences with an upwind numerical scheme

where the type (forward or backward) of the discretization of

the local first derivatives in any direction is chosen depending

on the actual direction of the velocity component in every

location in the domain. The resulting linear systems of

equations are solved using the SOR technique. Finally, the

adsorption efficiency is determined as:

ko ¼

ZZ
cAuIndS

SoutletZZ
cAuIndS

Sinlet

ð8Þ
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4. Results and discussion

The relative agreement between the results produced by

considering the sphere-in-cell approximation and those

obtained from the numerical solution in the 3-D sphere

assemblages is presented in Fig. 3. By assuming a typical

value for nm (1 active site per Å2), the values of the sorption

constants are: ka=1�10�30 m3s�1, kd=8�10�3 s�1 and

ks=8�10�3�100(1�n) (kg m�2)1� n s�1 since the dimension

of each term in Eq. (5) is mass per unit area per unit time.

These values can be considered as typical [20] and are used in

the simulations presented here unless otherwise stated. The

figure compares the respective adsorption efficiencies for

several porosities (e=0.9883, e =0.8136 and e =0.7243) while

the realistic adsorption/reaction/desorption mechanism includes

heterogeneous reaction of first (a) and second (b) order. In

general, the agreement is almost perfect for all cases when the

porosity values are high because the semi-analytical sphere-in-

cell model is very close to reality for such high porosity values

[19]. As the porosity becomes lower, the semi-analytical

approach of the sphere-in-cell model cannot adequately

describe the mass transport process for low Pe because the

diffusion layer is larger than the cell itself [19]. Despite this, the

agreement in Fig. 3 remains quite reasonable for the lower

porosities and Pe numbers. Finally, the order of the reaction
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Fig. 3. Comparison between adsorption efficiency in sphere-in-cell and sphere assem

(b) order is assumed.
does not seem to affect significantly the agreement between the

two approaches. It should be noted here that the characteristic

length used for the Peclet number in the case of the sphere-in-

cell model is the radius of the inner sphere, a. For the case of

numerical simulations in sphere packings, the characteristic

length is the radius of an ‘‘equivalent’’ sphere having the same

volume with the total volume of the spheres actually included

in the assemblage.

On the other hand, as Peclet values increase, the transport

process becomes more and more convective and the analytical

flow-field of the sphere-in-cell is not any more a sufficient

approximation of the actual flow-field in real granular media

thus leading to discrepancies of the model. The influence of the

Peclet number on the adsorption efficiency for e =0.7243 is

presented in Fig. 4. The calculations were done using the full-

numerical scheme where the following types of sorption are

assumed: instantaneous, Langmuir-type and realistic adsorp-

tion/reaction/desorption mechanism with first and second order

heterogeneous reaction. The highest efficiency is found for

instantaneous adsorption, as the concentration gradients are

lower in all the other cases. In general, the assumption of

instantaneous adsorption leads to significant overestimation for

the adsorption efficiency compared with that obtained by using

Langmuir or the more realistic adsorption–reaction–desorp-

tion model. In this respect, the instantaneous adsorption could
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be considered as a limiting case (upper limit) of an adsorption/

reaction/desorption mechanism (cAS=0 in Eq. (5) and

cA(a,h)=0 set as boundary condition in replacement of Eq.

(3e)). A decline of the adsorption efficiency with Pe is also

observed because the more convective flows (increasing

Peclet) tend to prevent substance A from being captured by

the solid surface. The discrete points in the figure represent

experimental data of Wilson and Geankoplis [28] that have

been appropriately transformed to the present quantities and

units [19]. It is important to note that the selected experimental

data have been obtained under low Reynolds number to ensure

creeping flow conditions. As the actual sorption mechanism in

the experiments is not clearly known, the agreement between

predictions of the adsorption/reaction/desorption case and the

experimental data can be considered as sufficient. This
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Fig. 5. Dependence of the adsorption efficiency on the ratio of the reaction to the ad
comparison could be further improved by modifying the

adsorption, reaction and desorption rate constants. However,

we do not proceed further in this direction, as there is no

available experimental information for such rates.

Fig. 5 depicts the relative influence of the reaction, ad-

sorption and desorption rates on the adsorption efficiency.

More precisely, Fig. 5a presents ko as a function of the ratio of

destruction rate of the component A due to reaction divided by

the destruction rate of the component A due to adsorption. It is

observed that the decrement of the reaction rate (for constant

adsorption rate) corresponds to a consequent decrement of the

adsorption efficiency because the diluted component has been

adsorbed but not destructed under the same rate and, therefore,

remains on the surface filling the vacant sites, i.e. setting

barriers in the sorption process of component A. On the other
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sorption rates (a) and on the ratio of the desorption to the adsorption rates (b).
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hand, the increment of reaction rate forces the adsorption

efficiency to tend asymptotically to a value that is independent

on the reaction order. Fig. 5b shows the influence of the ratio

desorption/adsorption rate on the overall adsorption efficiency

when heterogeneous reactions of first and second order are

assumed. It is seen that the increment of the desorption rate

beyond a critical value corresponds to a decrease of efficiencies

down to very low values. Additionally, the higher the order of

the heterogeneous reaction is, the higher the possibility for the

component A to escape from the adsorption area. This effect is

more clear for the case when the desorption rate is practically

dominant.

Fig. 6 presents the dependence of the adsorption efficiency

on the normalized concentration of the vacant sites, nm/N. It is

observed that lower values of nm/N correspond to very low

adsorption efficiencies because there are not enough vacant

sites to sufficiently adsorb the diluted mass. This behavior is

more pronounced for heterogeneous reactions of higher order.

On the other hand, there is a critical value for the normalized

concentration of the vacant sites, above which the adsorption

efficiency is practically constant (set by the reaction rate).

5. Conclusions

Analytical and numerical investigations for the mass

transport from a moving Newtonian fluid to an assemblage

of spherical solid absorbers are presented for low to moderate

Peclet values (Pe<100) and relatively large porosities (e>0.7).
In the present work, the sphere-in-cell approach permits the

analytical determination of the velocity field, which is then

used for the solution of the convection–diffusion equation

within the domain defined by the cell. In addition, we attempt a

numerical solution of the flow-field and the corresponding

convection–diffusion problem in the more realistic geometry

of stochastically constructed 3-D sphere assemblages. In all

cases, we consider: (a) instantaneous adsorption, (b) Langmuir-

type adsorption as well as a realistic sorption mechanism

involving first (c) and second (d) order heterogeneous reaction.

The adsorption efficiency is calculated as a function of Pe and

porosity and the adequacy of the simplified semi-analytical
approach (sphere-in-cell) is tested against the predictions from

the numerical study in sphere assemblages. It is found that

higher efficiencies correspond to lower porosity while increas-

ing Peclet numbers lead to lower ko values. Moreover, the

consideration of instantaneous adsorption yields higher values

of the adsorption efficiency at the same Peclet number and

porosity than those calculated in any other case. The

adsorption/reaction/desorption mechanism provides a reason-

able estimation of the adsorption efficiency tendency compared

to available experimental measurements.

Nomenclature

cA concentration of component A

cAS concentration of component A on the solid surface

cAV concentration of component A far away from the

absorbing area

D diffusion coefficient of the diluted component A in the

bulk phase

F1, F2, F3, F4, F5 coefficients for the velocity components

defined by Eqs. (2c–g)

ka, kd, ks adsorption, desorption and heterogeneous reaction

rate constants, respectively

N Avogadro’s number

n order of the heterogeneous reaction

Pe Peclet number (=UVa /D)

r spherical coordinate

Rn overall adsorption rate

S surface

Sinlet, Soutlet inlet and outlet surface, respectively

t time

u fluid velocity vector

UV approaching fluid velocity far from the solid surface

ur, uh r- and h-component of the fluid velocity, respectively

Greek Letters

a radius of the inner sphere in the sphere-in-cell model

b radius of the outer sphere in the sphere-in-cell model

h spherical coordinate

ko overall adsorption efficiency

nm site concentration (= vacant sites per unit surface)
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