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Abstract

We consider deriving the effective mass-transfer coefficient between two fluid phases in a porous medium, one of which is flowing and11
the other is immobile. A passive tracer is advected by the flowing phase, becomes partitioned at the fluid–fluid interface and diffuses in the
immobile phase. We use traditional volume-averaging methods to obtain a unit-cell boundary-value problem for the calculation of the effective13
mass-transfer coefficient. The problem is controlled by the Peclet number of the flowing phase, by a second dimensionless parameter that
captures diffusion and partition in the two phases and by the geometrical properties of the porous medium.15

We derive asymptotic results for the scaling of the mass-transfer coefficient under various limiting conditions. Then, we use numerical
methods that solve for the flow velocity field under Stokes flow conditions, and for the transport problem. The numerical results verify the17
asymptotic scaling expressions and provide estimates of the coefficient for a number of special cases. In particular, we find that when the
immobile phase is wetting the solid (in the form of films), the mass transfer coefficient is larger than in the non-wetting case (where the phase19
is distributed in the form of blobs). Shape factors for practical applications are also obtained.
� 2006 Published by Elsevier Ltd.21
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1. Introduction

There are numerous physicochemical processes, where an25
aqueous phase coexists and/or interacts with a non-aqueous
liquid phase in a porous medium. Many are of significant im-27
portance in terms of industrial and technological applications.
For typical examples, we cite tracer transport in petroleum29
reservoirs, the contamination of soils or aquifers by chemical
products, the long-term interaction between liquefied or chilled31
foods with packaging materials, and many others. The descrip-
tion of such processes often relies on mathematical models as33
experimentation can be expensive or difficult.
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In the presence of porous media, the need for a realistic 35
description of the structure of a porous medium significantly
increases the mathematical complexity of a model. How- 37
ever, elements of the microstructure must be captured when
moving from the pore level to the macroscopic level, where 39
often the process performance must be studied. A number
of techniques for the upscaling from the pore-scale to the 41
macroscopic scale in porous media have been developed. Of
specific interest to this paper is volume-averaging (Plumb and 43
Whitaker, 1990; Carbonell and Whitaker, 1984; Zanotti and
Carbonell, 1984a,b), which is very useful when pore scales 45
and macroscopic scales are separated. Starting from the rel-
evant differential equations at the pore level and using the 47
spatial averaging theorem, one is led after several mathemati-
cal manipulations, based on scale separation (Whitaker, 1967, 49
1977), to unit-cell problems for the estimation of macroscopic
quantities (Quintard and Whitaker, 1993a,b). Spatial averag- 51
ing techniques allow for the integral effect of the influence of

53
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pore geometry on transport to be captured in the mathematical1
formulation.

The present paper deals with the specific case of tracer trans-3
port in a multiphase environment. Typically, the macroscopic
models involve an exchange term to describe the rate of mass5
transfer between the two phases. The solution of the macro-
scopic equations requires the knowledge of several macroscopic7
constants (e.g., the mass transport coefficient and the dispersion
tensor). In general, one uses empirical correlations of the latter9
as a function of the Sherwood or the Peclet number, obtained
from experimental measurements of specific systems (e.g. see11
Quintard and Whitaker, 1994). From a theoretical perspective,
estimating these quantities is also possible using techniques,13
such as volume averaging (Whitaker, 1967, 1977). The majority
of previous theoretical works derive such models based on the15
assumption of mass exchange equilibrium between the aqueous
and the non-aqueous liquid phases, as discussed at length in17
previous works (Hunt et al., 1988; Fried et al., 1979; Geller and
Hunt, 1993; Lam et al., 1983). This assumption of infinitely fast19
diffusion in the non-aqueous phase, simplifies the mathemat-
ical modeling and the consequent simulation effort (Quintard21
and Whitaker, 1994; De Smedt and Wierenga, 1979; Gvirtzam
et al., 1988). In the present work, we probe the validity of this23
assumption. When the assumption is relaxed, the resulting unit-
cell problem includes mass transport between the two phases25
(the “aqueous” and the “non-aqueous” liquids), thus accounting
for inter-phase diffusion and partitioning. Its solution provides27
needed expressions for the macroscopic mass-transfer coeffi-
cient. We use various model pore geometries to obtain repre-29
sentative results. An ab initio calculation is also presented, in
which the Stokes equations are solved in typical pore geome-31
tries and compared with the volume-averaging results.

2. Background33

Consider a multi-phase domain consisting of a flowing aque-
ous phase (�-phase), an immobile non-aqueous liquid phase (�-35
phase) and a solid phase (�-phase), as schematically depicted
in Fig. 1. The assumption of a motionless �-phase is a good37
approximation for several applications such as water or gas
tracer transport in hydrocarbon reservoirs where the oil phase39
rests practically immobile (e.g. residual saturation), slow dis-
solution of NAPL’s in underground porous formations, and the41
packing of porous pellets with the presence of a wetting fluid.
To relax this assumption, one should recourse to techniques43
like Lattice-Boltzmann which are capable of solving the flow
problem while simultaneously determining the dynamic distri-45
bution of fluid phases in the considered porous domain (re-
quiring however significant computational resources (Bekri and47
Adler, 2002). A partitioning tracer is advected by the flowing
�-phase and partitioned in the immobile phase into which it is49
diffusing. It is also assumed that the solid phase is physico-
chemically neutral, i.e., the tracer is neither adsorbed nor re-51
acts with the �-phase. The governing processes are diffusion
and advection in the �-phase, and diffusion in the �-phase. The53
mass exchange at the �� interface is characterized by the diffu-
sion and partitioning properties of the tracer. The macroscopic55

Fig. 1. Schematic of a typical representative volume.

modeling of the processes is typically described by the follow-
ing advection–dispersion–reaction equations: 57

��
�〈C�〉

�t
+ 〈v〉·∇〈C�〉 = ��D∗

�∇2〈C�〉 − �

(
〈C�〉 − 1

K
〈C�〉

)
,

(1)

��
�〈C�〉

�t
= ��D

∗
�∇2〈C�〉 + �

(
〈C�〉 − 1

K
〈C�〉

)
, (2)

59

where ��, �� denote the volume fraction of the �- and �-phase,
respectively, v is the velocity vector in the �-phase, D∗

�, D∗
� are 61

the macroscopic dispersion coefficients in the �- and �-phase,
respectively, and K is the partitioning coefficient. Brackets de- 63
note averages, such that for any function yi associated with the
i-phase (either � or �), the superficial volume average is defined 65
as

〈yi〉 = 1

V

∫
Vi

yi dV (3)
67

and the interstitial volume average as

〈yi〉i = 1

Vi

∫
Vi

yi dV . (4)
69

By V we denote the total volume of the porous material, with V�
and V� being the volumes of aqueous and non-aqueous phases, 71
respectively.

The solution of the above macroscopic equations requires 73
the knowledge of several parameters (e.g., of the mass-transfer
coefficient and the dispersion tensor). As we noted, volume av- 75
eraging is a useful approach for providing these expressions
when scale separation exists. The main theoretical work in this 77
field is of Quintard and Whitaker (1994), which provided meth-
ods for the calculation of the mass-transfer coefficient and the 79
dispersion tensor under the assumption of infinitely fast diffu-
sion in the �-phase. As we noted above, this corresponds to an 81
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almost-constant concentration profile in the �-phase and per-1
mits the decoupling of the mass transport problems in the two
phases. Mass exchange between the two phases has been also3
modelled by considering either a controlling diffusive process,
macroscopically described by first-order kinetics, or by an ad-5
vection process (Ahmadi et al., 1998; Gwo et al., 1998; Vo-
gel et al., 2000; Dagan and Lessoff, 2001; Lessoff and Dagan,7
2001; Bekri et al., 1997). Here, we will propose a more rigor-
ous extension by considering non-equilibrium partitioning of9
the tracer in the two phases and mass transfer in both phases.
In the numerical illustrations to be shown, we will consider 3-11
D model pore geometries, where the immobile �-phase may be
distributed either in the form of wetting films or in the form13
of non-wetting aggregates (blobs). We seek to obtain estimates
of the mass transport coefficient and to investigate the effect15
of different structural and physicochemical parameters under
non-equilibrium partitioning. Otherwise, the volume averaging17
approach we apply is conventional and consists of the follow-
ing algorithm:

19
• Solve the flow problem at the pore level and calculate inter-

stitial and superficial velocity fields.21
• Formulate the mass transport problem at the pore level.
• Decompose the local velocities and concentrations in terms23

of interstitial averages and fluctuations.
• Describe the concentration fluctuations in terms of linear25

combinations of interstitial averaged concentrations and their
gradients.27

• Solve closure problems.
• Integrate the resulting quantities to calculate macroscopic co-29

efficients.

3. Formulation of the problem31

The pore-level transport of the tracer in the �-phase is de-
scribed by the diffusion–advection equation33

�C�

�t
+ ∇ · (vC�) = D�∇2C�, (5)

where C� is concentration, t is time, v is the fluid velocity and35
D� is the diffusivity in the �-phase. Since the �-phase is as-
sumed immobile, the diffusion equation describes the transport37
of tracer in that phase

�C�

�t
= D�∇2C�, (6)

39

where C� and D� are concentration and diffusivity in the �-
phase, respectively. Zero-flux boundary conditions apply on the41
solid–liquid interfaces

n�� · ∇C� = 0 at A��, (7)43

n�� · ∇C� = 0 at A��, (8)

as the transported species does not absorb or react at the solid.45
At the interface A�� between trapped and flowing phases,47

the following conditions apply

C� = KC�, (9) 49

D�n�� · ∇C� = D�n�� · ∇C�, (10)

where K is the partitioning coefficient. Eq. (9) describes parti- 51
tion equilibrium, while (10) expresses flux continuity at the in-
terface. This description of mass exchange is more general than 53
in previous works (Quintard and Whitaker, 1994) and does not
make use of the assumption of fast diffusion in the �-phase as 55
used in Quintard and Whitaker (1994), De Smedt and Wierenga
(1979), Gvirtzam et al. (1988). 57

Following the volume-averaging procedure (Quintard and
Whitaker, 1994), local concentrations and velocities are next 59
decomposed into interstitial averages and fluctuations

C� = 〈C�〉� + C′
�, (11a) 61

C� = 〈C�〉� + C′
�, (11b)

v� = 〈v�〉� + v′
�, (11c) 63

which subsequently are substituted in the governing differential
equations. Invoking separation of scales to discard small terms, 65
linearizing and proceeding as in Quintard and Whitaker (1994)
we obtain, assuming an isotropic medium of uniform porosity 67
and constant volume fractions, the following representation

C′
� = b� · ∇〈C�〉� + s�

(
1

K
〈C�〉� − 〈C�〉�

)
, (12a) 69

C′
� = b� · ∇〈C�〉� + s�

(
1

K
〈C�〉� − 〈C�〉�

)
, (12b)

where b�, b�, s� and s� are closure variables satisfying spe- 71
cific boundary value problems. Before proceeding we should
note that in general separation of scales may not apply in 73
all non-equilibrium problems. It is guaranteed, but in the
non-interesting problem when the macroscopic concentration 75
is equal to its equilibrium value (Kechagia et al., 2002). In
the general case the problem is non-local and decomposition 77
(12a) and (12b) do not apply, strictly speaking. Aware of this
limitation, we will nonetheless continue with the traditional 79
approach postulated in Quintard and Whitaker (1994) in order
to demonstrate the relative effect of non-equilibrium exchange 81
between the two phases.

4. The closure problems 83

Our main interest is in the mass-exchange coefficient, hence
we will avoid discussing the closure problems for b� and b� (for 85
details on the latter, see Quintard and Whitaker (1994)), and
we will restrict our attention only to s� and s�. It can be readily 87
shown that variable s� of the �-phase satisfies the boundary
value problem 89

v� · ∇s� = D�∇2s� − �−1
� �, (13)
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with boundary conditions1

s� = 1 + s�

K
at A��, (14a)

D�n�� · ∇s� = D�n�� · ∇s� at A��, (14b)3

n�� · ∇s� = 0 at A��, (14c)

and the compatibility condition5

〈s�〉 = 0. (15)

Similarly, variable s� of the �-phase satisfies the following prob-7
lem

D�∇2s� = −�−1
� �, (16)9

n�� · ∇s� = 0 at A��, (17)

〈s�〉 = 0, (18)11

where the mass-transfer coefficient, �, is given by

� = D�

V

∫
A��

n�� · ∇s� dA. (19)
13

The above can be simplified by introducing the transformation
s� = 1 + ���s and s� = ���s , and in dimensionless form15

s� = 1 + �∗��, (20a)

s� = �∗��, (20b)17

where we defined the dimensionless mass-transfer coefficient
�∗ = al2

�/D�, and l� is a characteristic length of the �-phase.19
Then, in dimensionless notation, the boundary value problems
read as follows: In the �-phase21

Pe�v · ∇�� = ∇2�� − �−1
� , (21)

n�� · ∇�� = 0 at A��, (22)23

where Pe� = 〈v〉�l�/D�. In the �-phase

0 = �∇2�� + �−1
� , (23)25

n�� · ∇�� = 0 at A��, (24a)

〈��〉 = 0, (24b)27

where � = D�/D�. The two problems are coupled at their in-
terface through the condition29

�� = 1

K
�� at A��. (25)

In this notation, the mass-transfer coefficient becomes31

�∗ = − ��
〈��〉 . (26)

One final substitution will allow for additional insight. Define33

	� = �K���� (27a)

and 35

	� = �����. (27b)

Then, the two boundary value problems take the canonical form 37

Pe�u · ∇	� = ∇2	� − 
 in the �-phase, (28)

n�� · ∇	� = 0 at A��, (29) 39

where 
 = �K��/�� and

0 = ∇2	� + 1 in the �-phase, (30) 41

n�� · ∇	� = 0 at A��, (31a)

	� = 	� at A��, (31b) 43

〈	�〉 = 0. (31c)

The mass-transfer coefficient is simply 45

�∗ = −�K����
〈	�〉 . (32)

Before proceeding with the analysis of the results, we note the 47
following:

1. The overall problem is characterized by the geometry of 49
the unit cell and by two dimensionless numbers, the Peclet
number Pe� and the dimensionless parameter 
. The latter 51
captures the ratio of diffusivities and the equilibrium parti-
tion constant in a single combination. 53

2. From Eqs. (28)–(31) we deduce 〈	�〉 < 0, indicating in (32)
a positive mass-transfer coefficient, as expected. 55

3. The solution for 	� (Eqs. (30)–(31c)) is only geometry-
dependent. 57

5. Asymptotic analysis

We will use the formulation given in Eqs. (28)–(32) to ex- 59
amine the following asymptotic limits:

a. Limit Pe�>1 61
In this limit, where the transport in the �-phase is diffusion-
controlled, Eqs. (28)–(32) indicate that 	� and 	� and, con- 63
sequently, the mass transport coefficient �∗ are independent
of the velocity and the Peclet number Pe�. 65

b. Limit 
 = �K��/��>1
In this limit, 	� is geometry- and Peclet number-dependent. 67
If we further assume geometric similarity (i.e., a constant
ratio ��/��), we find the following scaling result: 69

�∗ ∝ �K�� ⇒ �∗ ∝ 
��. (33)

c. Limit 
 = �K��/��?1 71
This limit corresponds to the assumption of sufficiently fast
diffusion in the �-phase, frequently used in previous works. 73
By substituting 	� = 
�� in (28)–(29) the corresponding 75
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boundary value problem in the �-phase now becomes1

Pe�u · ∇�� = ∇2�� − 1, (34)

n�� · ∇�� = 0 at A��, (35a)3

�� = 1



	� → 0 at A��. (35b)

The solution for �� is independent of 
 and depends only on5
Pe� and the cell geometry. Thus, using the same approach
as above, we find the scaling result7

�∗ ∝ ��. (36)

This relation indicates the interesting result, that the mass9
transfer coefficient is independent of � or K when 
 is large.

The above scaling relations will be checked against analytical11
solutions and numerical simulations to be reported below. Two
different unit-cell geometries will be used: one involving two13
parallel phases of infinite extent, and another involving a unit
cube with a disordered phase distribution.15

6. Results

In the numerical simulations, the velocity field was computed17
numerically by solving the Stokes equations

∇p = �∇2v, (37a)19

∇ · v = 0, (37b)

v = 0 at A��, (37c)21

where v, p, and � are the velocity vector, the pressure field and
the fluid viscosity, respectively. The procedure for solving the23
3D Stokes flow problem involves discretization in terms of cu-
bic elements and was as follows (Adler et al., 1990; Kikkinides25
and Burganos, 2000; Kainourgiakis et al., 2002; Coutelieris
et al., 2003): At the pore level, a staggered marker-and-cell27
(MAC) mesh is used, with the pressure defined at the center of
the cell and the velocity components defined along the corre-29
sponding face boundaries. The resulting linear system of equa-
tions is solved by a successive over-relaxation (SOR) method.31
An initial guess for p is determined through the solution of a
Laplace equation. Next, the velocity vector v is calculated from33
the corresponding momentum balance and the continuity equa-
tion ∇ · v = 0. The pressure is corrected through an artificial35
compressibility equation of the form

dp

dt
= ∇ · v. (38)37

Essentially, the method adds an artificial density time deriva-
tive related to the pressure by an artificial equation of state39
p = �, where � is an artificial compressibility factor. In anal-
ogy with the compressible momentum equation, c = �1/2 is an41
artificial speed of sound and thus for stability reasons during
the iterative procedure, its magnitude should be such that the43

respective artificial Mach number, M = R
c

max
D

(∑
i

u2
i

)1/2

is

Fig. 2. A two-dimensional unit-cell for parallel phases.

low (M>1), where R is the relevant Reynolds number. In the45
limiting case of R → 0, which is the present case, any finite
value of � should meet this criterion. Thus, we have chosen 47
� = 1 although it is evident that the exact value cannot have
any effect on the final (steady state) results since at steady state 49
the artificial density time derivative is equal to zero.

The above steps are repeated until convergence is reached. 51
This numerical scheme for the determination of the velocity
field has been widely validated in terms of both the velocity 53
field and the corresponding permeability (Adler et al., 1990;
Kikkinides and Burganos, 2000; Kainourgiakis et al., 2002; 55
Coutelieris et al., 2003).

For the numerical solution of the transport boundary value 57
problems, a non-uniform finite differences scheme with up-
winding was used for discretization, with the resulting linear 59
systems of equations solved using again SOR.

6.1. Parallel phases 61

First, we solved the problem for the simplified geometry of
parallel phases under the assumption of one-dimensional flow. 63
In addition, it is considered that diffusion is significant only
in the direction perpendicular to flow. These assumptions cor- 65
respond to a Pe-independent Type II closure problem like that
of Quintard and Whitaker (1994) for sufficiently fast diffusion. 67
The unit cell is shown in Fig. 2 and has been used before to
calculate properties of the Taylor-Aris dispersion problem for 69
a passive tracer (Quintard and Whitaker, 1994). We solved the
boundary value problem in this geometry analytically, yielding 71
the following expression for the dimensionless mass-transfer
coefficient 73

�∗ = ����
A1 + A2 + A3

, (39)

where we used as characteristic length the length L of the unit 75
cell. (Note that in this notation we have �∗ = �̂(l�/L)2.) The
coefficients are, respectively 77

A1 = − 1

6


[( ��
2

+ ��
)3

−
�3
�

8

]
�2
�, (40a)
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Fig. 3. Analytical and numerical results for the dimensionless mass-transfer coefficient for the case of parallel phases.

-0.4 -0.2 0.0 0.2 0.4
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

  infinite

  =10/3

  =1/3

  =0

s β 

y

Fig. 4. Numerical results for s� for the case of parallel phases.

A2 = 1

2


(
1 + ��

2��

) [( ��
2

+ ��
)2

−
�2
�

4

]
���

2
�, (40b)

1

A3 =
�4
���

3
−

(
�� + ��

4

) �3
���

2

. (40c)

In the limiting case of infinitely fast diffusion in the �-phase3
(� → ∞ ⇒ 
 → ∞), we find the asymptotic results A1 → 0,
A2 → 0 and A3 → �4

���/3, thus the dimensionless mass5
transport coefficient �̂ → 3/��. This result coincides with the
analytical mass transport coefficient for the case of parallel7
phases found in Quintard and Whitaker (1994) and shown to
be independent of Peclet number. Fig. 3 shows the dimen-9

sionless mass transfer coefficient plotted as a function of the
governing dimensionless parameter 
 = �K��/��, calculated 11
both by using the analytical approach and by numerical simu-
lation. Analytical and numerical solutions are almost identical. 13
For low values of 
, the mass transfer coefficient increases
with 
 (i.e., with increasing values of � and/or K) in a lin- 15
ear fashion. At higher values, � reaches a constant value and
becomes practically independent of 
. This behavior is in 17
agreement with the asymptotic analysis presented above (see
Eq. (33) for low 
 and Eq. (36) for high 
). The spatial dis- 19
tribution of the dimensionless scalar s� is shown in Fig. 4.
In the limiting case 
 → ∞ ⇒ � → ∞ the calculated s� 21
values are identical to those found by Quintard and Whitaker
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(b)

Fig. 5. The effect of 
 on the mass-transfer coefficient, defined either based on the characteristic length L (a) or on the characteristic length l� (b) for various
values of the volume fraction and for the case of parallel phases. Static conditions.

(1994) for fast diffusion in the �-phase and for the same1
geometry.

Further probing of the validity of the asymptotic scaling re-3
sults in this case is portrayed in Fig. 5, where the dimensionless
mass-transfer coefficient is plotted against 
 for various values5
of the fraction ��, with the ratio ��/�� kept constant. In Fig. 5a,
we used the length of the cell, L = I� + I� + I�, as the char-7
acteristic length. The mass transfer coefficient �̂ is shown to
decrease linearly with ��. Although in accordance with previ-9
ous investigations (e.g. see Eq. (47e) in Quintard and Whitaker
(1994)), this result seems at first inconsistent with the asymp-11
totic analysis of Section 4, where a∗ is predicted to increase
linearly with ��. The explanation lies in the different character-13
istic lengths used to non-dimensionalize the mass-transfer co-
efficient. It is not difficult to show that for the parallel phases15
geometry we have l�/L = ��, hence a∗ = â�2�. Fig. 5b shows

the corresponding plot for a∗ for various values of ��. An excel- 17
lent agreement with the predictions of the asymptotic analysis
is shown. In particular, a∗ → 3�� when � → ∞ ⇔ 
 → ∞, 19
as expected.

6.2. Cubic unit cell 21

Next, we considered geometries that are more realistic than
the limiting case of the parallel phases examined above. Fig. 23
6 shows a typical periodic 3-D unit cell, assumed to represent
regularly packed granular porous media. The solid grains (�- 25
phase) are located at the eight edges of the cell. For the immo-
bile �-phase, two different cases are considered:

27
a. The immobile phase does not wet the solid, hence it is

distributed in the pore space in the form of blobs. 29
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Fig. 6. A typical 3-D unit cell, with the immobile fluid phase configuration in the form of blobs (a) or films (b). Volume fractions �� = 0.31, �� = 0.12. The
immobile phase is also plotted separately for clarity.
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Fig. 7. The effect of the Peclet number on the mass-transfer coefficient for the limiting case of sufficiently fast diffusion in the �-phase for the 3-D unit cell
of Fig. 6.

b. The immobile phase wets the solid, hence it is distributed1
in the pore space in the form of films.

In either case, the “aqueous” phase (�-phase) flows under3
Stokes flow conditions. Initially, the case of infinitely fast
diffusion in the �-phase (� = D�/D� → ∞) is considered.5

The effect of the pore-scale Peclet number on the dimen-
sionless mass transfer coefficient is shown in Fig. 7 (for � → 7
∞). As expected from the asymptotic analysis of Section 4, the
mass-transfer coefficient is nearly constant at low Peclet num- 9
bers (of the order of less than unity), and starts increasing when
the Peclet number increases. The wetting condition affects the 11
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Fig. 8. The effect of Peclet number on the curve of the mass-transfer coefficient as a function of 
. Two values are shown, one low (Pe = 1) and another
high (Pe = 100). 3-D unit cells with volume fractions �� = 0.31 and �� = 0.12 (a) and �� = 0.39 and �� = 0.04 (b).

value of the mass transfer coefficient: the film (wetting) config-1
uration of the immobile phase yields mass transfer coefficients
always larger than those corresponding to blobs (non-wetting).3
This is a result of the higher surface area per unit volume avail-
able in the case of films in comparison to those of blobs for5
otherwise the same volumetric fractions. In addition, it should
be noted that these results are in excellent agreement with the7
theoretical investigation of Ahmadi et al. (2001).

In Fig. 8, the effect of the dimensionless parameter 
 on the9
mass transfer coefficient is shown for two different values of
the Peclet number. Again, in accordance with the asymptotic11
analysis of Section 4, the mass transport coefficient increases
linearly with 
 at low 
 values, and reaches a constant value13
at high 
. As before, the mass-transfer coefficient is higher in
the case when the immobile phase is wetting (films) compared15
to the non-wetting case (blobs). The coefficient is independent

of the Peclet number for low 
 values, also as predicted by the 17
asymptotic analysis. When �� and �� vary, the resulting trends
are qualitatively similar, as observed from a direct comparison 19
of Figs. 8a and b. We note that in these simulations, the dry
porosity remains constant and equal to 0.43, �� varied in the 21
interval 0.12–0.4 and, consequently, �� varied in the interval
0.31–0.39. It is evident that as �� decreases so does the mass- 23
transfer coefficient.

Before proceeding further, it is important to stress once more 25
the significance of parameter 
. Indeed, one of the basic con-
clusions of this work is that through 
 we can reduce the pa- 27
rameters involved in the description of the process. For exam-
ple, the diffusivity ratio � has practically the same effect with 29
the partitioning coefficient K, since 
= �K��/��. Similar con-
clusions can be drawn for the ratio of the phase porosities at 31
least for well-defined geometries.
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Fig. 9. Autocorrelation function of the wetting phase distribution Rz(u).

7. Shape factors1

The mass-transfer coefficient has been explicitly described
in the literature as a function of the geometry and the physico-3
chemical characteristics of the immobile phase, using expres-
sions of the form5

a = �
��D�

b2
, (41)

where b is a characteristic length scale and the unknown shape7
factor � is geometry-dependent (Van Genuchten and Wierenga,
1976; Goltz and Roberts, 1988; Parker and Valocchi, 1986;9
Cherblanc et al., 2003). The numerical results of the present
study can be used to calculate the shape factor for the various11
geometries investigated. In the case of parallel phases, we find
numerically that � has the value 3.04, which is in excellent13
agreement with the theoretical value � = 3 corresponding to
1-D diffusion in a slab (Cherblanc et al., 2003).15

For the case of a 3-D unit cell, where the immobile phase
is in the form of a spherical blob (see Fig. 6), the calculated17
value under static conditions is � = 14.97, which is again in
excellent agreement with the theoretical value �=15, obtained19
for 3-D diffusion in a sphere representing 3-D heterogeneity
(Parker and Valocchi, 1986). The case of a wetting immobile21
phase (films) is not as straightforward, however, due to the
complex geometry of the films (Fig. 6). To extract the charac-23
teristic length of the immobile phase in this case, we used the
following approach: First, we calculated the two-point autocor-25
relation function of the immobile phase alone and defined the
characteristic length as the shortest distance at which the two-27
point autocorrelation function becomes equal to zero (Fig. 9).
For a blob-like distribution, this length is equal to the radius of29
the spherical blob (e.g. see (Torquato, 2002)), as can be seen
from the same Fig. 9. After determining the respective length31
for the case of films, we find that in the static case � = 9.1,
a value that is closer to the one for radial diffusion in an infi-33
nite cylinder (� = 8) and which represents 2-D heterogeneity.

This can be understood from the fact that an immobile phase 35
in the form of films resembles in some sense the shape of a 2-
D wafer, slightly distorted due to the disorder in the unit cell. 37
As a result, a certain degree of 3-D heterogeneity is induced,
thus altering the shape factor to somewhat larger values than 39
the ones corresponding to the pure 2D case.

8. Conclusions 41

In this paper we derived the effective mass-transfer coeffi-
cient between two fluid phases in a porous medium, one of 43
which is flowing and the other is immobile. A passive tracer
is advected by the flowing phase, becomes partitioned at the 45
fluid–fluid interface and diffuses in the immobile phase. We
used traditional volume-averaging methods to obtain a unit- 47
cell boundary-value problem for the calculation of the effective
mass-transfer coefficient. The problem was shown to be con- 49
trolled by the Peclet number of the flowing phase, the dimen-
sionless parameter 
 = �K��/��, that captures diffusion and 51
partition in the two phases and the geometrical properties of
the porous medium. 53

We derived asymptotic results for the scaling of the mass-
transfer coefficient under various limiting conditions. Then, we 55
used numerical methods that solve for the flow velocity field
under Stokes flow conditions, and for the transport problem. 57
The numerical results verify the asymptotic scaling expressions
and provide estimates of the coefficient for a number of special 59
cases. In particular, we found that when the immobile phase
is wetting the solid (in the form of films), the mass-transfer 61
coefficient is larger than in the non-wetting case (where the
phase is distributed in the form of blobs). Shape factors for 63
practical applications were also obtained.

The results generalize the effective mass-transfer coefficient 65
when the assumption of infinitely fast diffusion in the immobile
phase breaks down. The value of the coefficient is smaller than 67
in the case of infinitely fast diffusion, and in fact vanishes
as the product of the partition coefficient and the diffusivity 69

CES6656



UNCORRECTED P
ROOF

ARTICLE IN PRESS
F.A. Coutelieris et al. / Chemical Engineering Science ( ) – 11

ratio vanishes. The effect of the Peclet number is significant at1
high value of parameter 
 (namely at fast diffusion) but less
important at lower values.3

Notation

A1, A2, A3 dummy variables used in Eq. (40)
A��, A��, A�� area of the �–�, �–� and �–� interfaces, re-

spectively
b characteristic length scale
b�, b� vectors satisfy closure problems in the �- and

�-phase, respectively
C�, C� concentrations of diffusing species in the �-

and �-phase, respectively
C′

�, C′
� fluctuations used for the decomposition of the

concentrations in the �- and �-phase, respec-
tively

D�, D� molecular diffusivities of diffusing species in
the �- and �-phase, respectively

D∗
�, D∗

� dispersivities in the �- and �-phase, respec-
tively

K partitioning coefficient
l�, l�, l� characteristic length of �-, �-and �-phases,

respectively
L total length of the unit cell
n��, n��, n�� unit normal vectors directed from �-phase to

�-phase, from �-phase to �-phase and from
�-phase to �-phase, respectively

p pressure field of flowing �-phase
Pe Peclet number [=〈v〉�L/D�]
Pe� Peclet number defined in the �-phase

[=〈v〉�l�/D�]
s�, s� dimensionless scalars for the closure prob-

lems in the �- and �-phase, respectively
t time
v� velocity-like coefficient used in the velocity

averaged transport equations in the �-phase
v velocity in the �-phase
v′
� fluctuation used for the decompositions of the

velocity in the �-phase
V total volume
V�, V� volume of �- and �-phase, respectively
yi (i =�, �, �) dummy quantity associated with

phase i

Greek letters

� mass transport coefficient
�∗ dimensionless mass transport coefficient

[=al2
�/D�]

�̂ dimensionless mass transport coefficient
[=aL2/D�]

� geometry-dependent shape factor used in Eq.
(41)

� diffusivity ratio [=D�/D�]5

��, �� volume fraction of the �- and �-phase, re-
spectively

��, �� scalar variables used for the asymptotic anal-
ysis

�� scalar variable used for the asymptotic anal-
ysis when 
 � 1


 dimensionless parameter [=�K��/��]
� viscosity of flowing �-phase
� parameter used for the decomposition of s�

and s�
	�, 	� scalar variables used for the decomposition

of �� and ��
��s , ��s scalar variables used for the decomposition

of b�, s� and b�, s�, respectively

Subscripts/superscripts

� indicator of the flowing aqueousphase
� indicator of the trapped non-aqueous liquid

phase
� indicator for the solid phase

Other symbols

〈Q〉 superficial volume average of any quantity Q
〈Q〉i (i=�, �, �) interstitial volume average of any

quantity Q in the phase i 7
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