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Abstract. Droplets transport in homogeneous porous media has been found to be an attractive 
problem applicable in a lot of industrial and scientific sectors such as enhanced oil recovery, food 
production, plastics etc. As applications become wider, a predictive method for the process is 
warranted. To this end, it has been widely accepted that the collection of γ-order moments, Sγ, can 
describe the time evolution of any spatially averaged quantity like the mean diameter of spherical 
droplets, while it has been also found that Sγ satisfies the transport equations [1]. Here, the so-called 
“Sγ concept” is applied in a CFD module for the modelling of the transport processes occurred in a 
mixture of a continuous aqueous phase which includes a discontinuous one in the form of droplets. 
This mixture flows within a homogeneous porous medium under creeping or laminar flow 
conditions. The moments of the particle size distribution are evaluated using the local flow 
conditions as obtained from CFD simulations for the processes considered. To solve the transport 
equations, the microstructure droplets formation/destruction has been also taken into account by 
using already known analytical expressions for the source terms representing the break up and 
coalescence of the droplets [2-4]. The proposed constitutive model adequately simulates the effect 
of porous geometry on the droplets size distribution and could be helpful in understanding the 
phenomena that take place in microscopic scale.

Introduction

Given the difficulty in the description of a transient (dynamic) structure of spherical bubbles due
to its high geometrical complexity, it is hard to define a globally valid model for the prediction of 
the time evolution for almost any process occurring in such a configuration. In the present study, the 
approach we take is the so-called ‘moments of distribution’, Sγ, where an arbitrary number of 
moments is used to describe the drop size distribution. The essence of the method is that the 
evolution of the moments of a distribution can be analyzed using a transport equation consisting of a 
convective term, which can be coupled to the local flow characteristics in a device. The source 
terms in the transport equation describe the local phenomena (break-up and coalescence) that affect 
on the particle size distribution. The main advantage of this approach is that analytical expressions
(including probabilistic parameters) for the characteristic magnitudes could be derived, leading in 
successful simulations through common and rather simple CFD techniques.

The Moments of Distribution (S) concept
The domain (particle) size distribution can be described by a collection of moments of the 

distribution as:
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where n is the total number density and P(d) is the distribution of the droplets. It is easy to show that 
for two different  values, the S functions can produce a useful characteristic diameter 
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The main advantage of the S function is that it satisfies a transport equation [1], i.e. 
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where it has been assumed that the drops have the same velocity, u, as the continuous bulk phase. 
Note that u  can be obtained from the CFD flow calculations. The relevant source terms will be 
discussed separately below.

The source terms
To model the source terms in eq. (3), we assume an analytical expression for the particle size 

distribution, i.e. a log-normal distribution. Since the governing phenomena are the droplet break up, 
coalescence and growth, the source terms can be expressed as:

i br clh h h     (4)

where brh  and clh  are the respective source terms that can be modeled explicitly. 

Break-up occurs when the droplet size is larger than a critical size dcr as determined by the 
critical capillary number for laminar flow: 
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where Cacr is the critical capillary number,   is the velocity gradient (shear rate for simple shear), 

c is the viscosity of the continuous phase and  is the interfacial tension. That relationship depends 
on the viscosity ratio and the flow type, as has been discussed extensively [2,5]. The break-up 
source term, can be written as:
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where Nf(d) is the number of fragments formed and τbr is the break-up time.



Since coalescence not only depends on the collision rate but also on the coalescence probability 
per collision [3], the generic form of the coalescence source term is [3,4]:

      4

2

3/ 6
22 






 




eqeqcoaleqrelcollcl ddPduks (7)

where φ is the volume fraction, deq is an equivalent (effective) diameter and  eqcoal dP  is the 

coalescence probability of a single collision event, calculated by using the model for partial mobile 
interfaces, developed by Chesters [3]. The product  eqrelcoll duk represents the Smoluchowski 

collision rate.

Simulations
The flowchart of the simulation algorithm is shown in Figure 1. To define a realistic domain for 

the solution of the flow and mass transfer problem, a porous medium is constructed in the form of a 
spherical particle assemblage. Specifically, the representation of the biphasic domains under 
consideration is achieved by the random deposition of spheres of a given radius in a box of specified 
length. The structure is digitized and the phase function (equal to zero for solid and unity for the 
pore space) is determined to obtain the specified porosity (see Figure 2  for a sample medium of ε = 
0.7243). The size of the digitized domains is 102×102×102 and the length of the simulation box is 
ten times the sphere radius.In the numerical simulations, the velocity field was computed
numerically by solving the Stokes equations by taking into account the  velocity vector, the pressure 
field and the fluid viscosity, respectively. The procedure for solving the 3D Stokes flow problem 
involves discretization in terms of cubic elements and was as follows [6-9]: At the pore level, a 

staggered marker-and-cell (MAC) mesh is used, with the pressure defined at the center of the cell 
and the velocity components defined along the corresponding face boundaries. The resulting linear 
system of equations is solved by a successive over-relaxation (SOR) method. An initial guess for p 
is determined through the solution of a Laplace equation. Next, the velocity vector v is calculated 
from the corresponding momentum balance and the continuity equations. The pressure is corrected 
through an artificial compressibility equation. The above steps are repeated until convergence is 
reached. This numerical scheme for the determination of the velocity field has been widely validated 



in terms of both the velocity field and the corresponding permeability. For the numerical solution of 

the transport boundary value problems, a non-uniform two-step Mac-Cormack method with 
upwinding [10] was used for discretization, with the resulting linear systems of equations solved 
using again SOR. For all the simuations, the porosity was 0.7243 and the Peclet number was set to 
300 (having the spheres’ radius as characteristic length), which is adequately represent the fully 
convective regime.

Results and Discussion
The time evolution of the droplet size is presented in Figure 3. A maximum followed by a 

minimum in size were observed due to the competition between the hydrodynamic phenomena (see 
discussion below). Finally, the droplet size increases monotonically for the longer time scales. This 
dynamic behavior of the system is clarified in Figure 4, where the relative significance of the source 
terms is shown. The individual source terms have been normalized on their maximum, i.e. 
Sbr=Sbr/MAX{Sbr}, Scl=Scl/MAX{Scl}, in order to be in the same graph. One can observe that during 
the first 550 seconds, coalescence dominates over the break-up as the particles are small, therefore, 
the droplet sizes increase. At t=550 sec the significances of break-up and coalescence are equal, thus 
the particle size goes through a maximum. After 550 seconds, break-up becomes more significant 
than coalescence, thus particle size decreases to a size, which is almost analogous to that of the 
initial population. It is worth noticing that the time considered for the simulation is critical for the 



validity of the results since longer time periods correspond to rough iterations of the phenomenon. It 
is also found that the critical time for a single period depends on the flow characteristics. For the 
given porosity and velocity field was found to be 1120 sec, while higher velocities or lower 
porosities will lead to longer time periods.  

Conclusions
In the present work, the S concept has been applied to predict the microstructure formation in a 

mixture flowing in a homogeneous porous medium. This microstructure formation process is 

governed by the competition between the hydrodynamic phenomena, i.e. break-up and coalescence. 
Coalescence dominates at the first half of the process leading in a significant increment of the 
droplets’ size. Since break-up becomes competitive at the late stage of the phenomenon, that size   
decreases up to a value almost equivalent to this of the initial conditions. 
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