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Modeling of transport phenomena in a fuel cell anode
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Abstract A mathematical model for the simulation of the transport phenomena occurred in the 
anode of a typical fuel cell is presented here. The model initially considers a simple one-
dimensional geometry where the mass transport equation is combined with a Tafel-type description 
for the current density. By assuming isothermal conditions, the numerical solution of the differential 
equations was achieved with the use of a non-linear shooting scheme in conjunction with the 
multidimensional Newton algorithm. The space was discretized through a constant-step mesh while 
the resulting nonlinear system of ordinary differential equations was solved by using the 4th order 
Runge-Kutta method. The whole algorithm was implemented by developing a new FORTRAN 
code. In addition, a planar two-dimensional geometry is also considered, where the mass transport is 
described by the convection-diffusion equation within the catalyst layer together with the Navier-
Stokes equation for laminar flow conditions and the electrochemical effects, while the convective 
heat transfer within the developed diffusion layer is also taken into account. This approach has been 
numerically implemented and solved by using the finite volume method being applicable through 
the CFD-RC© commercial package. For the sake of simplicity, the feedstream of the fuel cell was 
assumed to be a hydrogen-rich mixture (H2 >90%) for all cases. Both SOFC and PEM type fuel 
cells were considered in this study, while the results are presented in terms of fuel concentration, 
produced current density and overpotential.

Introduction

During the last years, fuel cells have attracted considerable scientific and engineering interest 
because they present high efficiency and very low environmental impact. It is important that various 
fuel options such as natural gas, methanol, ethanol and gasoline are considered feasible for fuel cell
operation, offering a very significant ecological dimension in the problem of effective energy 
conversion [1]. Several types of fuel cells have been investigated and applied till nowadays, among 
which Solid Oxide Fuel Cells (SOFCs) and Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 
have attained the wider acceptance in terms of applications [2]. The mass transport within a fuel cell 
is a key factor to its performance. Especially, PEM-type fuel cell suffers from mass transport 
limitations predominantly at anode, arising from the diffusion of fuel in covering the active 
electrocatalyst layer and from hydrodynamics in the anode flow channel. The geometrical 
characteristics of the electrodes (thickness, volume porosity, tortuosity etc) are the crucial 
parameters affecting the mass transport of chemical species through the electrode/electrolyte 



interface. This process influences significantly the overpotential, therefore the efficiency of the cell 
in terms of power production, mainly because of temperature singularities [2, 3].

Since there are serious difficulties in realizing prototypes, numerous multi-dimensional 
simulation have been published because mathematical modeling is essential for the better 
understanding of the role of the main parameters that affect the performance of a fuel cell [4-6].
Most of these studies have been focused on the anode of the cell, because this is the place where the 
electrochemical reactions occur, thus it might play the most important role in the power production 
process. Among these simulation activities, the most simple and interesting model is that of Jeng 
and Chen [7] and Jeng et al. [8], who managed to predict the behavior of a direct methanol PEM 
fuel cell, while the effect of the current density on fuel crossover was also examined. Their one-
dimensional approach is very important because it is quite trouble-free, accurate and easily 
applicable to other configurations, although it suffers from some uncertainties (for example, they 
assumed that methanol concentration in the diffusion layer is insignificant compared with that of 
water). 

In the present work, the above mentioned 1-D approach was used in order to develop a 
predictive mathematical model for the transport phenomena occurring along the axis of a generic 
typical fuel cell anode. Obviously, a significant trial to overcome some of the above mentioned 
deficiencies has been incorporated here. Further to this simple modeling approach, a more detailed 
2-D simulation has also been implemented for the same processes in order to overcome superficial 
assumptions and mathematical manipulations. A comparison between these two approaches, being 
applied to both SOFC and PEM fuel cell configurations, is also presented with the purpose to 
further investigate the value added by the two-dimensional approach.

Model description
The operation of a typical fuel cell is based on the continuous supply of its anode by a 

hydrogen-rich fuel mixture while cathode is exposed to atmospheric air. In any case, the produced 
ions migrate trough electrolyte and heterogeneously react in order to produce water, heat and power. 
More precisely, the reactions that take place in a fuel cell are as follows

Fuel cell type Place Reaction

SOFC Cathode 2
2 4 2O e O                                     (1a)

SOFC Anode 2
2 2 2H O H O e                            (2a)

PEM Anode
22 4 4H H e                                   (1b)

PEM Cathode
2 24 4 2O H e H O                         (2b)

A typical 2-D cut of a fuel cell containing the anode area is schematically presented in Fig. 1. 
In particular, anode is divided into three regions: an electrolyte region, an active catalyst region 
(catalyst layer) that provides a catalytic site for the oxidation of fuel and a diffusion region 
(diffusion layer) composed of highly porous and electronically conductive material. The electrolyte 
is assumed to be dense in the case of SOFC and porous for the case of PEM fuel cell. The diffusion 
layer is located adjacent to the flow channel and favoring the distribution of reactants to the catalyst 
layer. For the modeling point of view, the area of interest is the catalyst layer. The fuel fed to the 
anode compartment of the fuel cell is assumed to be a mixture of high hydrogen content (H2 >90%). 
It is also assumed that hydrogen reacts only partially in the catalyst/electrolyte interface; therefore a 
remaining portion follows the stream to the outlet and/or crossovers to the cathode compartment. 
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Figure 1: Schematic diagram of the simulated (anode) area.

One dimensional model
By assuming that the pressure in both anode and cathode compartments is equal to 1 atm and 

that the major transport processes mainly occur at the direction parallel to the cell axis, the mass 
flux in the catalyst layer for steady-state isothermal conditions can be expressed as follows

feff
f f f w

dC
j D C j

dx
   (3)

where eff
fD  is the effective diffusivity of fuel in the catalyst layer and fj , wj  are the mass fluxes of 

the fuel and the water, respectively. In the above equation, the convection term has been neglected 
since the velocity is very low within the catalyst layer [7, 8]. By taking into account the material 
balance for the water, its mass flux is given as 

4
d

w w

I i
j j

F


  (4)

where 
4

I i

F


 is the flux of the produced water mass and d

wj  represents the water flux entering the 

catalyst through the diffusion layer. By I and i the cell and ionic current density are denoted, 
respectively, while F represents the Faraday’s constant. The water flux from diffusion layer 
depends on fuel cell type, being zero in the case of SOFC , i.e.

0d
wj  (5a)

For the case of PEM fuel cell, the above mentioned mass flux is approximated as [7]



d d
w w

I
j

F
 (5b)

where d
w is the electro-osmotic drag coefficient of water. It is worth noticing that the oxidation of 

fuel along the axis of the fuel cell is linear with the ionic current density, thus the variation of mass 
flux is analogous to the spatial evolution of current density, i.e.

1

4
fdj di

dx F dx
  (6)

By differentiating eq. (3) and using eqs. (5b) and (6), the governing differential equation for 
mass transfer within the catalyst layer becomes as follows

 
2

2
1

4 4
f feff d

f w f

d C dCI i I I di
D C

dx F F dx F dx
     

 
(7a)

which is valid for the case of PEM fuel cell. When a SOFC is considered, it becomes

 
2

2
1

4 4
f feff

f f

d C dCI i I di
D C

dx F dx F dx


   (7b)

Since the last equations combine the mass transport with the local current density, it is 
necessary to develop the relative expression for i . Starting from the well known Butler-Volmer 
equation and after same simplifications, a Tafel-type equation can be obtained 

 
4 aa F

RT
f

di
K C e

dx


 (8)

where  is the order of the reaction,   is the anodic overpotential and K is a coefficient including 
the geometrical and physical properties of the electrolyte. By involving the local potentials at
catalyst layer and at ionomeric phase as well as the Ohm’s law, the variation of the overpotential 
within the catalyst layer is given as [7, 8]

 m s s

d
R R i R I

dx


   (9)

where mR  is the effective ionic resistance in the catalyst layer and sR  is the effective resistance in 

the solid phase.
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Again, by differentiating eq. (8) and using eq. (9), it is easy to obtain the governing 
differential equation for current density within the catalyst layer as follows

 
2

2

4f a
m s s

f

dC a Fd i di
R R i R I

dx C dx RT dx

        
  

(10)

In order to numerically integrate the system of either eqs. (7a) & (10) or eqs. (7b) & (10), it 
is necessary to decrease the order by introducing new unknowns *

fC  and *i (downgrade technique), 

thus a system of four equations is produced for the case of PEM as follows

*f
f

dC
C

dx
 (11a)

*di
i

dx
 (11b)

   
*

* *1
4 1

4
f d

w f feff
f

dC
I i I C I C i

dx FD
       (11c)

 
*

* *4 a
f m s s

f

a Fdi
C R R i R I i

dx C RT

        
  

(11d)

Note that eq. (11c) becomes for the case of SOFC

   
*

* *1
1

4
f

f feff
f

dC
I i C I C i

dx FD
      (11e)

Independently on the fuel cell type, the boundary conditions accompanying the above system 
are as follows

 * 0 0fC x   (12a)

 0 ref
f fC x C  (12b)

 0 0i x   (12c)

 * 0 0i x   (12d)

where ref
fC is the uniform reference fuel concentration at the inlet. Although it is rather obvious that

 i x cell length I  (13)



the analysis here does not use the relation above for the description of the boundary condition as in 
[7], because it is better for the accurate convergence of a first order system of differential equations 
to be accompanied by initial conditions at the same point of the domain [9]. Therefore, the above 
eq. (13) is considered as one of the criteria against which the solution of the system must be 
evaluated.

The numerical solution of the systems of differential equations (11a), (11b), (11c)/(11e) and 
(11d) was achieved with the use of a non-linear shooting scheme in conjunction with the 
multidimensional Newton algorithm [10]. The space was discretized through a constant-step mesh,
while the resulting nonlinear system of ordinary differential equations was solved by using the 4th 
order Runge-Kutta method. A new FORTRAN code was developed to implement the above 
mentioned numerical scheme, while the values used are as in [7] and [8]. The computational time in 
a simple home PC is of order of seconds, depended on the initial guesses for the Newton method.

Two dimensional model
The configuration of a typical planar fuel cell is as in Fig. 2 where the simulated area has 

been divided in seven separate regions: the anode and the cathode channel, the porous anode and 
cathode, the electrolyte layer and the two contacts. The fuel and air mixtures enter the system 
through the anode and cathode channel respectively and have typical compositions. 

Figure 2: Simulated geometry f a planar fuel cell

The steady state laminar flow is studied by using the Navier-Stokes equation for 
incompressible fluids

  2u u p u      (14)

where u  is the local velocity vector,   is the density, p is the pressure, and   is the viscosity. All 
these quantities are referred to the mixture of both the anodic and cathodic feed-stream. 

By neglecting the radiation term, the heat transfer equation in the fuel cell becomes as 
follows

   p p pu c T Q a c T c T u  


       (15)
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where pc  is the mixture’s specific heat, a  is the diffusion thermal coefficient and Q


 is the 

produced or consumed heat. 

Since only surface reactions are taken into account for the current simulations (no-bulk 
reactions), the mass transport equation is of the form

 , 0i i mix iu C D C     (16)

where iC  is the concentration of i -species and ,i mixD  is the diffusion coefficient of this component

in the mixture.

By assuming charge transfer controlled process, the Butler-Volmer equation has been 
incorporated for the electrochemical reactions occurring in the cell and the calculation of current 
density, as

0 exp expa ca F a F
i i

RT RT
               

(17)

where 0i  is the exchange current density, aa  and ca  are the anodic and cathodic charge transfer 

coefficients, respectively, and R  is the ideal gas constant.

For the simulations presented here, constant values of mass inflow rates were used for both 
the anode and the cathode channel mixtures and fixed pressure boundary condition of 1 atm was set 
to both outlets. A voltage of 0.73 V was applied to the cathode contact and the boundary condition 
for the temperature was assumed isothermal and fixed to 1073 K for the case of SOFC and 373K for 
the case of PEM. All the other boundary conditions were set to wall indication with zero value of 
velocity, zero flux of temperature, species composition and current indication. 

In order to achieve the numerical solution of the above equations, a 2-D mesh was developed 
in accordance with the specific dimensions as in Fig. 2. The finite volume method was used through 
the commercially available software package CFD-RC© for the solution of eqs. (14)-(17) where the
simulated domain was discretized by an unstructured grid. The values of the operational parameters 
are as in [7], [8], [11] and [12]. In order to achieve residual values lower than 10-4 for all the 
unknown quantities, a computational time of approximately half an hour was on average necessary 
for runs on an Intel Pentium 3.2 GHz computer.

Results and Discussion
The hydrogen molar fraction obtained by the one-dimensional model as function of 

dimensionless normalized length is presented in Fig. 3 for various current densities. As expected 
[1], concentration decreases with the current density. It is also depicted that the concentration 
profiles are nearly linear for low current densities, because diffusion dominates at this conditions,
therefore only a small portion of hydrogen is consumed in the catalyst layer. Finally, SOFC 
configuration presents significantly higher hydrogen concentrations than those of PEM, because the 
membrane is permeable allowing a portion of hydrogen to escape towards the cathode’s side. This is 



not possible for the case of the dense electrolyte of a SOFC, presenting a zero additional water flux 
(see eqs. 5a & 5b). The comparison between the two different fuel cell types is more clearly 
presented in Fig. 4, where the same results as those of Fig. 3 have been obtained by the two-
dimensional approach. Hydrogen is consumed with higher rates in the case of PEM, thus producing 
higher heat amounts, as well as more power.

Figure 3: Hydrogen concentration within the catalyst layer for various current densities

Figure 4: Hydrogen concentration for SOFC and PEM configurations

Fig. 5 presents the overpotential in the catalyst layer as estimated by the 1-D approach. As 
above, several values of current density and two fuel cell types have also been considered. A rather 
smooth increment from the inlet to the outlet is observed (note the scale of y-axis), resulted by the 
consequent increment of the hydrogen consumption with the distance, as it has been shown in Fig. 
3. Furthermore, the overpotential increases with current density, which is in accordance with 
previously presented experimental and theoretical results [7, 8, 11, 12]. It is important to note that
overpotential values at the inlet area are not exactly zero since some consumption of hydrogen 
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already exists in the diffusion layer for both SOFC and PEM cells. Finally, it is important to note 
that SOFC always presents slightly higher overpotential values than those of PEM, mainly because 
of the higher operational temperature of the cell. However, this difference can be characterized as 
insignificant since it is les than 0.05V for the same conditions. The same qualitative behavior is also 
observed in Fig. 6, where relative results from 2-D model are presented. In terms of quantitative 
analysis, the overpotential values are to some extent different (higher) than those of Fig. 5, because 
of the most detailed model, being closer to elsewhere obtained overpotential [11, 12] than 1-D 
respective results of Fig. 6.

0.35

0.40

0.45

0.50

0.0 0.2 0.4 0.6 0.8 1.0
dimensionless distance

o
ve

rp
o

te
n

ti
al

 (
V

)

SOFC, I=0.1

SOFC, I=0.2

SOFC, I=0.3

SOFC, I=0.4

PEM, I=0.1

PEM, I=0.2

PEM, I=0.3

PEM, I=0.4

A/cm2

A/cm2

A/cm2

A/cm2

A/cm2

A/cm2

A/cm2

A/cm2

Figure 5: Overpotential within the catalyst layer for various current densities

Figure 6: Overpotential for SOFC and PEM configurations

Conclusions
In the present work, two approaches have been adopted to adequately simulate the transport 

phenomena occurred in the anode of a fuel cell. The first one is a one dimensional, relatively simple 
model, which is analogous to those presented in [7] and [8]. Such a model should involve some 
assumptions (like isothermal operation, pre-defined current at outlet, etc.) to obtain the 1-D 



solution. To overcome such theoretical issues, a more complicated two-dimensional approach has 
also been developed, including the coupled solution for flow, heat transfer, mass transport and 
electrochemistry. It is found that both models describe with sufficient accuracy [11, 12] the 
operation of a fuel cell in terms of feedstock concentration and overpotential produced. By using 
both the approaches, SOFC and PEM configurations were compared and a slight advantage of 
SOFC has been underlined, since it presents higher fuel consumption as well as higher overpotential 
values.
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