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Abstract. The steady state heat transfer that takes place in a hydrogen-fed tubular Solid Oxide Fuel 
Cell is considered here. The heat is produced due to the electrochemical reaction of the hydrogen 
that feds the cell with oxygen anions. An averaging technique is used to formulate a relatively 
simple one-dimensional heat transfer problem. The conduction-convection equation describing the 
heat transfer from the electrolyte’s surface to the moving gas that surrounds the cell’s cathode is 
solved analytically under the assumption of iso-thermal conditions. Three different cases are 
considered for the flow of the cathode gas: (a) plug flow, (b) fully developed incompressible 
laminar flow, and (c) compressible flow. Analytical expressions for the spatial distribution of gas 
and cell temperature along the cell's length are obtained. For constant mass flow rate, different flow 
regimes produce almost the similar spatial distributions for the gas temperature and, consequently, 
the consideration of the flow regime is of low importance in the design of fuel cell stacks. 

Introduction 

This work can be considered as a direct exploitation of our previous study for the thermal 
transport phenomena occurred within a solid oxide fuel cell operating at high temperatures [1]. The 
analytical model presented there, takes into account the complete conduction-convection heat 
transfer equation along the cell, where it was assumed that the atmospheric air flows in the cathode 
compartment under fully developed incompressible laminar flow conditions. Here, we extend this 
limitation by assuming three different flow regimes of the cathode gas: (a) plug flow, (b) fully 
developed incompressible laminar flow, and (c) compressible flow. By using the averaging 
technique presented in detail elsewhere [1], the original 2-D heat transfer problem is reduced to a 
simplified 1-D formulation, which is analytically solved here. Therefore, analytical expressions for 
the spatial distribution of the cell and gas temperatures could be obtained.  

Formulation of the problem 

A typical fuel cell consists of an anode and a cathode part between which a catalyst (electrolyte) 
layer exists. The atmospheric air flows in the cathode gas channel while a hydrogen-rich mixture 
flows under various conditions at the anode channel. The present model studies a typical cylindrical 
fuel cell, presented in detail elsewhere [1-3]. By considering a circular ring of the domain of the 
interest, it is easy to define an averaging procedure in a cross section z, as it is presented in Fig. 1 
[1]. In that case, the gas temperature is defined as follows 

 ( )
β

g gα

1
T z  =  T (r,z)2 rdr

β-α
π∫          (1) 

where gT (r,z)  is the original two dimensional gas temperature.  
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Figure 1 - The averaging technique 
 

The heat transfer in solid phase 
As the conduction is the only available mechanism for the heat transport within solids, the heat 

transfer in the solid phase of the cell is described by the following differential equation 

 
2

c
s t eff2

d T (x)
-α  =  j (U + j r  - E(x) )

dx
          (2) 

which has been analytically solved in [1]. It was found that  
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where the boundary conditions 
Tc(1) = Tc(0)            (4a) 

and 
Tc(0) = constant (finite value)         (4b) 

impose that 
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The heat transfer in gas phase 

The governing differential equation for the heat transfer in the gas phase can be written as 
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g g
f 2

dT (x) d T (x)
u(x)  = α

dx dx
          (6) 

where u(x) is the gas velocity. Obviously, the solution of the above equation depends on the velocity 
profile. Three different cases are considered for the flow of the cathode gas: plug flow, fully 
developed incompressible laminar flow and compressible flow. 

By assuming plug flow regime, i.e. that u(x) = u = const., the differential eq. (6) becomes 

 
2

g g
f 2

dT (x) d T (x)
u  = α

dx dx
          (7) 

having a general solution of the form 

 
fα

x
f u

g g1 g2

α
T (x)=C e +C

u
          (8) 

By employing the boundary conditions  
Tg(0) - Tg(1) = ∆Tg           (9a) 

and 
Tg(0) = constant (finite value)         (9b) 

the above-mentioned arbitrary constants are identified as  

 
f

f
g1 gα

u

α
C = ∆T

u 1-e
 
 
 

                   (10a) 

and 

 
f

g
g2 g α

u

∆T
C =T (0)-

1-e
                    (10b) 

The solution for the case of fully developed incompressible laminar flow has already been 
presented in detail elsewhere [1], thus we make use here of the final form of the solution  
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•
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 − +  
 −

        (11) 

where m
•

 is the constant mass flow rate of the gas through a circular surface of diameter d. It is 
worth noticing that the viscosity of the atmospheric air (gas mixture) should be constant in order to 
use the Hagen-Poiseuille concept for the description of the velocity, but viscosity is in general an 
unknown function of the gas temperature. However, it has been reported that the variation of air 
viscosity is less than 4% per 25 K [4] and, thus, it can be considered as constant for variation of gas 
temperature up to 100 K. On the other hand, high temperature differences may damage the material 
of the solid electrolyte and this is another reason for keeping the temperature differences up to 100 
K. 

To address the case of compressible flow, it is considered that the moving air is a compressible 

ideal gas, thus by assuming constant mass flow rate of the gas, ( )2πdm =ρ  u4
•

, through a circular 

surface of diameter d, the velocity u(x) can be expressed as a function of gas temperature as follows 
0
A

g g2 2

air

V m m
u(x) = T (x) = 0.0036 T (x)

d dπ MW
4

• •

       (12) 

thus, the differential equation describing the heat transfer in the gas phase becomes:  
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        (13) 

The solution of the above equation can be obtained by using a downgrading technique for non-linear 
differential equations [5] and is of the form 
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By employing the boundary conditions described previously, the above-mentioned arbitrary 
constants are identified by solving numerically the following 2x2 non-linear algebraic system  
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Solution technique 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Iterative scheme for the solution 
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The above Fig. 2 presents the generalized iterative scheme used for the solution of the problem. 

In general, the algorithm is as follows  
 
STEP1: Guess an initial value for 

( )
cT (x)

previous
  

STEP2: Calculate a0 and a1 used in eq. (3) [1]  
STEP3: Estimate Tc(x) from eq. (3), (5a) & (5b) 

STEP4: Find 
1( )

c c0
T (x) T (x)dx

next
= ∫   

STEP5: If 
( ) ( )

c cT (x) T (x)
next previous

=  stop the procedure since the solution is Tc(x) estimated at 

STEP2 ang go to STEP6; otherwise set 
( ) ( )

c cT (x) T (x)
previous next

=  and repeat the 

procedure between STEP2 to STEP5. 
STEP6: Assume a specific type for the gas flow and calculate Tg(x) from the appropriate 

equations  
 

A FORTRAN code has been developed in order to implement the above algorithm. As it is 
senseless for a general theoretical study to discuss the specific values for the parameters used, 
typical estimations/measurements are taken from the literature [4].  

Results and discussion 

The profile of the cell temperature is presented in Fig. 3 for typical values of current density 
(100mA/cm2), specific effective resistance (1 Ωcm2) and temperature difference in the gas phase 
(∆Tg = 100 K). As Tc(0) = Tc(1), the spatial variation of Tc(x) is always less than 0.5% for any 
current and resistance (it corresponds to an absolute value of 5 K with respect to the 1000 K of 
operational temperature), which means that it could be accurately considered as constant, as it has 
been previously reported in the related bibliography [6]. More precisely, there are some 
combinations of resistances and currents where the cell temperature presents a really constant 
profile with maximum absolute divergence from the base line less than 0.0025%. Finally, it should 
be noted that Tc(x) is independent on ∆Tg. It should be also stressed out that, in general, Tg(x) ≠ 
Tc(x), which can be interpreted as a discontinuity on the gas-solid interface of the gas temperature. 
In fact, it is a reckless and false conclusion as the interface clearly losses its physical meaning after 
applying the averaging procedure presented above. 
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Figure 3 - Spatially distributed profile of the cell 

temperature  
Figure 4 - Spatial profile of the gas temperature 

for various flow conditions. 
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The distribution of the gas temperature along the dimensionless length of the cell is presented in 
Fig. 4 for a typical value of current density (j=100mA/cm2). Various flow regimes (plug flow, fully 
developed incompressible laminar flow, compressible flow) have been considered. The specific 
effective resistance (defined as eff ohm ηa ηcr  = r L + r  + r , where ohmr  is the ohmic resistance and ηar  and 

ηcr  are the polarization anodic and cathodic resistances, respectively) is 1 Ωcm2 and the overall 

temperature difference in the gas phase, ∆Tg, has been fixed to 100 K. This value for the 
temperature difference has been chosen to be low enough to ensure that the viscosity does not 
change significantly and, therefore, the Hagen-Poiseuille flow regime remains valid. The plug flow 
regime generates almost the same spatial distribution for the gas temperature as that produced by 
assuming laminar flow. This is because the second Euclidean norm (magnitude) of the velocity 
vector was constant in all cases. On the other hand, a small decrement of the gas temperature is 
observed when compressible flow is assumed because the magnitude of the velocity in that case is 
more than 3 times higher than this of laminar flow since the velocity for the case of laminar flow is 
of order of 1 while the velocity for the case of compressible flow is of order of 0.0036 x 1000. 
Therefore, the averaged temperature Tg(x) should be lower in the case of compressible flow because 
of the lower thickness of the thermal boundary layer. Moreover, this difference is always less than 
5% and could be safely considered as insignificant. This underlines the negligible character of 
conduction in the gas phase because of the plateau observed in the temperature profile (very limited 
variation of T with x) due to the relatively high temperature regime that these processes occur. 
Generally speaking, the different flow regimes examined here are shown to produce thermal 
boundary layers of equivalent mean thickness under the restriction of constant mass flow rate.  

Conclusions  

The steady state heat transfer problem from the solid electrolyte to the absorbing cathode gas 
within a fuel cell was considered here. After a reduction of the dimensions of the original problem 
by using an averaging technique, the heat transfer equations accompanied by the appropriate 
boundary conditions are solved analytically for the gas phase. Three different flow regimes are 
considered: plug flow, fully developed incompressible laminar flow and compressible flow. Finally, 
the flow regime is found to play an insignificant role because the different flow regimes produce 
completely analogous temperature profiles having plateau almost everywhere along x. Thus, the 
consideration of the flow regime is of low importance in the process of design and implementation 
of fuel cell stacks.  
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