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Abstract: The scope of this work is to estimate the effective mass-transfer coefficient in a two-phase system of oil
and water fluid droplets, both being in a porous medium. To this end, a tracer is advected from the flow-
ing aqueous phase to the immobile non-aqueous one. Partitioning at the fluid-fluid interface and surface
diffusion are also taken into account. By using spatial/volume-averaging techniques, the appropriately sim-
plified boundary-value problems are described and numerically solved for the flow velocity field and for the
transport problem. The problem was found to be controlled by the Peclet number of the flowing phase, the
dimensionless parameter Λ, containing both diffusion and partition in the two phases, as well as the geo-
metrical properties of the porous structure. It is also verified that the usually involved unit cell-configurations
underestimate the mass transport to the immobile phase.
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1. Introduction

Mathematical modeling of multiphase transport processesin porous media is a powerful tool employed wheneverexperimentation is either expensive or difficult due tothe nature of the process. A realistic description of theporous structure significantly increases the complexity ofthe mathematics involved, due to the coupling between thephysicochemical mechanisms and the geometrical com-plexity of the porous medium. Modeling becomes moredifficult when moving from the pore level to the field level,
∗E-mail: 	outel@cc.uoi.gr

because different length scales result in complicated de-scriptions of the physics of the problem and therefore re-quires massive computational power.
The major issue of typical macroscopic modeling for suchcases can be identified at the a-priori definition of themass transport coefficient and the dispersion tensor, whichare necessary for the solution of these equations althoughthey are macroscopic quantities normally derived from thesolution of these equations. So far, mainly empirical orsemi-empirical correlations of Sherwood with Peclet num-ber (which include these parameters) have been proposedbased on experimental measurements of specific systems[1]. On the other hand, the generalized treatment ofsuch a problem corresponds to theoretical estimations ofthese quantities where the volume averaging concept is
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a frequently employed tool for large scale modeling ofprocesses that take place in porous media, eliminatingthe influence of porous structure (geometry) on transportresults [2–5]. Starting from transport equations at themicro-scale (pore) level, the spatial averaging theorem isapplied along with the proper assumptions, leading to theestimation of macroscopic quantities such as mass transfercoefficient and dispersion tensor [6, 7].Of great importance for industrial and technological ap-plications are these physicochemical processes wherean aqueous phase coexists and/or interacts with anon-aqueous liquid one within a porous medium. At mostof the models used for describing such processes, massexchange between the two liquid phases has been con-sidered at some extent and modeled under a variety ofdifferent approaches, such as phenomenological approx-imations that make use of an additional term, which isequivalent to the rate of mass transfer between the twophases (see, for example [8]) or sufficiently fast diffusionin the non-aqueous phase (see, for example [9]). Mass ex-change between the two phases has also been modelledby considering either a controlling diffusive process, whichis macroscopically described by a first-order kinetic, oran advection process in the less permeable zone [10–15].Obviously, these assumptions are a rough representationof the real world, thus a more complicated model has re-cently been proposed, which takes into account interfacialdiffusion in both phases and partitioning phenomena [16].To further simplify the mathematical modeling and toeliminate the simulation effort, the majority of theabove-mentioned cases/models were applied in quite sim-plistic domains (unit cell, etc.), since the interest was onthe interfacial mass exchange rather than on representingthe medium as realistically as was possible.In the present work, we apply the stylish approach, thatis typically used for the mass interfacial exchange [16],to 3-D porous structures representing granular media. Inthat respect, the aim of this work is to estimate the masstransport coefficient and to investigate how different struc-tural and physicochemical parameters affect it. In orderto demonstrate the validity of this approach, a comparisonwith other existing theoretical results is attempted.
2. Mathematical formulation
The area of interest is a multi-phase domain consist-ing of a flowing aqueous phase (β-phase), an immobilenon-aqueous liquid phase (γ-phase), and a solid phase(σ-phase). A partitioning tracer is advected by the flowing
β-phase and undergoes partitioning in the immobile phaseinto which it is diffusing. It is also assumed that the solidphase is physico-chemically neutral, i.e. the tracer is nei-ther adsorbed nor reacts with the σ-phase. The governingprocesses are diffusion and advection in the β-phase, and

diffusion in the γ-phase. The mass exchange at the βγ in-terface is characterized by the diffusion and partitioningproperties of the tracer.The pore-level transport of the tracer in the β-phase isdescribed by the diffusion-advection equation
∂Cβ
∂t +∇ · (vCβ) = Dβ∇2Cβ , (1)

where Cβ is concentration, t is time, v is the fluid velocityand Dβ is the diffusivity in the β-phase. Since the γ-phaseis assumed immobile, the diffusion equation describes thetransport of tracer in that phase
∂Cγ
∂t = Dγ∇2Cγ , (2)

where Cγ and Dγ are concentration and diffusivity in the
γ-phase, respectively. Zero-flux boundary conditions ap-ply on the solid-liquid interfaces

nβσ · ∇Cβ = 0 at Aβσ , (3a)
nγσ · ∇Cγ = 0 at Aγσ , (3b)

as the transported species does not absorb or react at thesolid. At the interface Aβγ between the trapped and flow-ing phases, the conditions for partition equilibrium andflux continuity at the interface are applied [16]
Cγ = KCβ , (4a)

Dβnβγ · ∇Cβ = Dγnβγ · ∇Cγ , (4b)
where K is the partitioning coefficient.Following the volume-averaging procedure, which is pre-sented briefly in Table 1 and in detail elsewhere [1, 16],the above problem can be transformed to the followingdimensionless system

Peβu · ∇φβ =∇2φβ − Λ in the β-phase, (5)
nβσ · ∇φβ = 0 at Aβσ , (6)0 =∇2φγ + 1 in the γ-phase, (7)
nγσ · ∇φγ = 0 at Aγσ , (8a)

φβ = φγ at Aβγ , (8b)
〈φγ〉 = 0, (8c)

where
Peβ = 〈v〉β lβDβ
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Table 1. The spatial averaging technique (as in [16]).

Differential equations with Boundary Condi-tions and Compatibility Conditions Mass transfer coefficient
Pore level formulation ∂Cβ

∂t +∇ · (vCβ) = Dβ∇2Cβ
∂Cγ
∂t = Dγ∇2Cγ

nβσ · ∇Cβ = 0 at Aβσ
nγσ · ∇Cγ = 0 at Aγσ
Cγ = KCβ at Aβγ
Dβnβγ · ∇Cβ = Dγnβγ · ∇Cγ at Aβγ

Decomposition vβ · ∇sβ = Dβ∇2sβ − ε−1
β α α = Dβ

V
∫
Aβγ

nβγ · ∇sβdA

Cβ = 〈Cβ〉β + C ′β Dγ∇2sγ = −ε−1
γ α

Cγ = 〈Cγ〉γ + C ′γ sβ = 1 + sγ
K at Aβγ

vβ = 〈vβ〉β + v′β Dβnβγ · ∇sβ = Dγnβγ · ∇sγ at Aβγ
nβσ · ∇sβ = 0 at Aβσ
nγσ · ∇sγ = 0 at Aγσ
〈sβ〉 = 0〈
sγ
〉 = 0

Transformation Peβv · ∇ζβ =∇2ζβ − ε−1
β α∗ = − εβ

〈ζβ〉

sβ = 1 + α∗ζβ 0 = δ∇2ζγ + ε−1
γ

sγ = α∗ζγ nβσ · ∇ζβ = 0 at Aβσ
nγσ · ∇ζγ = 0 at Aγσ
ζβ = 1

K ζγ at Aβγ
〈
ζγ
〉 = 0

Substitution Peβu · ∇φβ =∇2φβ − Λ α∗ = − δKεβεγ〈φβ〉

φβ = δKεγζβ 0 =∇2φγ + 1
φγ = δεγζγ nβσ · ∇φβ = 0 at Aβσ

nγσ · ∇φγ = 0 at Aγσ
φβ = φγ at Aβγ〈
φγ
〉 = 0
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is the Peclet number defined in the β-phase by using alength lβ characteristic for this phase, u is the dimension-less velocity vector, φβ , φγ are scalar variables used forthe decomposition (see [16]) and
Λ = δKεγ

εβ
,

with εβ , εγ the volume fraction of the β- and γ-phase,respectively, and
δ = Dγ

Dβ
.

In accordance with the above approach, the dimensionlessmass-transfer coefficient is simply [16]
α∗ = −δKεβεγ〈φβ〉

. (9)
Brackets denote averages, such that for any function yiassociated with the i-phase (either β or γ), the superficialvolume average is defined as

〈yi〉 = 1
V

∫
Vi

yidV (10)
and the interstitial volume average as

〈yi〉i = 1
Vi

∫
Vi

yidV . (11)
By V we denote the total volume of the porous mate-rial, with Vβ and Vγ being the volumes of aqueous andnon-aqueous phases, respectively.
3. Simulations
3.1. Geometry
To define a realistic domain for the solution of the flowand transport problems, a granular porous medium wasconstructed in the form of a spherical particle assemblage.Specifically, the representation of the domains under con-sideration has been achieved by the random deposition ofrigid spheres of a given radius in a box of specified dimen-sions, while the spherical droplets are again randomly po-sitioned in the remaining void space so as to assure boththe overall porosity of the medium and the volume fractionof the non-aqueous phase. A sample medium with overallporosity of 0.72 and εβ = 0.12 is graphically presented inFig. 1.

Figure 1. Schematical representation of 3-D granular medium.

3.2. Flow-field
The velocity field was computed numerically by solvingthe Stokes equations

∇p = µ∇2v, (12a)
∇ · v = 0, (12b)

v = 0 at Aβσ , (12c)
where v, p, and µ are the velocity vector, the pressurefield and the fluid viscosity, respectively. Obviously, thevelocity v at any point has been afterwards normalizedwith the characteristic velocity magnitude to obtain thedimensionless velocity u used in Eq. (5). The procedurefor solving the 3D Stokes flow problem involves discretiza-tion in terms of cubic elements and is described as follows[17]: At the pore level, a staggered marker-and-cell (MAC)mesh is used, with the pressure defined at the center of thecell and the velocity components defined along the corre-sponding face boundaries. The resulting linear system ofequations is solved by a successive over-relaxation (SOR)method. An initial guess for p is determined through thesolution of a Laplace equation. Next, the velocity vector
v is calculated from the corresponding momentum balanceand the continuity equation ∇ · v = 0. The pressure iscorrected through an artificial compressibility equation ofthe form

dp
dt =∇ · v. (13)
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The above steps are repeated until convergence isreached. This numerical scheme for the determination ofthe velocity field has been widely validated in terms ofboth the velocity field and the corresponding permeability[18].Fig. 2a, 2b and 2c show the results of the pressure-field,the velocity and the stream function for a typical porousmedium of ε = 0.72. A randomly selected 2-D cut ofthe medium is considered in order for the results to beclearly visualized. The boundary condition at the closedwalls is no-slip, at the left boundary we impose an inflowand at the right boundary an outflow condition. Smallvortices and recirculating flow are produced in the medium,depending on the pore size, while smoother profiles areobtained at the inlet and outlet. The velocity gradientfrom top to bottom at the inlet surface is because the inflowcondition assures constant molar flux instead of plug-typevelocity vector. Finally, it is interesting to observe thatthe faster flow paths are generated by the porous structureand appear wherever the pore diameters are quite small.
3.3. Algorithm
To adequately simulate the above-described problem, analgorithmic procedure has been developed as follows:

• Solve the flow problem at the pore level and calcu-late interstitial and superficial velocity fields.
• Formulate the mass transport problem at the porelevel.
• Decompose the local velocities and concentrationsin terms of interstitial averages and fluctuations.
• Describe the concentration fluctuations in terms oflinear combinations of interstitial averaged concen-trations and their gradients.
• Solve τηε closure problems.
• Integrate the resulting quantities to calculatemacroscopic coefficients.

3.4. Numerical scheme
The simulated geometry was discretized in space by astructure grid consisting of more than 1 million cells, sincethe size of the digitized domains was 102×102×102 gridpoints for all the simulations. The grid spacing is chosento be non-uniform because it has been proven that appro-priately non-uniform discretization performs better thanthe equal-spaced one [19]. For the numerical solution ofthe closure boundary value problems, a non-uniform fi-nite difference scheme with upwinding was used, with the

Figure 2. Snapshot of the pressure field (a), velocity (b) and stream
lines (c) simulations through the representative porous
medium with the flow direction from left to right. Black
bodies correspond to solid phase and transparent ones to
the γ-phase.
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resulting linear systems of equations solved using suc-cessive over-relaxation (SOR) [20]. Residual values lowerthan 10−4 were achieved for all the unknown quantitiesand the computational needs were satisfied by an IntelPentium 3.2 GHz computer. The steady-state conditionwas assumed to be achieved whenever the relative differ-ence for all the results of two sequential time-steps waslower than 0.0001%. Under these conditions, the neces-sary time for each run was approximately about half aday (including the solution for the flow-field). Severalruns were carried out to perform the following parametricanalysis for the above described model.
4. Results and discussion

At this point, it is important to stress once more the signif-icance of parameter Λ because it corresponds to a signif-icant reduction of the parameters involved in the descrip-tion of the process. For example, this concept provides as-surance that the diffusivity ratio has practically the sameeffect with the partitioning coefficient, since these parame-ters are related through the Λ expression. Similar conclu-sions can be drawn for the ratio of the phase porosities,as well. Following the above, the effect of the dimen-sionless parameter Λ on the dimensionless mass transfercoefficient is shown in Fig. 3, for two different values of thePeclet number. It is clearly shown that the mass transportcoefficient rapidly increases with Λ at low Λ values, andreaches a constant value at high Λ. The porous geometrypositively affects the value of the mass transfer coefficient:the case when a realistic 3-D porous geometry is consid-ered yields mass transfer coefficients always larger thanthose corresponding to unit-cell approximations. This is aresult of the higher surface area per unit volume availablein the case of 3-D structures with a lot of droplets in com-parison to those for otherwise the same volumetric frac-tions. The coefficient is independent of the Peclet numberfor low Λ values; the same is also predicted by other the-oretical works [16, 21]. On the other hand, the higherthe Peclet value, the larger the amount of mass exchangeat the fluid-fluid interface, as the mass transport coeffi-cient indicates. This is because strong convective regimesin porous structures usually eliminate the possibility forthe tracer to escape from the bubbles’ surface. This be-havior is further observed in Fig. 4, where the effect ofthe pore-scale Peclet number on the dimensionless masstransfer coefficient is shown. As before, the mass-transfercoefficient is higher in the case when the representation ofporous medium is more realistic. Finally, the effect of thegeometry on the process is presented in Fig. 5, where themass-transfer coefficient is depicted as a function of the

Figure 3. The mass-transfer coefficient as a function of Λ.

Figure 4. The effect of the Peclet number on the mass-transfer co-
efficient for a medium of εβ = 0.39 and εγ = 0.04.

volume fraction of γ-phase. It is important to note that inthese simulations, the dry porosity remains constant andequal to 0.43, while εγ varied between 0.4 and 0.12, thus
εβ varied in the interval 0.39-0.31, respectively. It can beobserved that as εγ decreases so does the mass transfercoefficient, in accordance with existing results presentedelsewhere [8, 11, 16]. The discrete points in this figurecorrespond to predictions by using the unit cell approach[16], where again, the mass transport coefficient has beenunderestimated.
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Figure 5. The effect of the volume fraction of γ-phase on the
mass-transfer coefficient. Dry porosity is 0.43.

5. Conclusions
In this paper, the effective mass-transfer coefficient be-tween two fluid phases in a porous medium is derived.One of the phases is assumed to be flowing and the otheras immobile while a passive tracer is advected by the flow-ing phase, undergoes partitioning at the fluid-fluid inter-face and diffuses in the immobile phase. By using thevolume-averaging method, the relative closure problemshave been defined and applied in a 3-D artificial represen-tation of a typical granular porous medium. The numericalsolution within this domain allows for the calculation ofthe effective mass-transfer coefficient. The problem wasshown to be controlled by the Peclet number of the flow-ing phase and the dimensionless parameter Λ, includingthe diffusion and the geometrical properties of the porousmedium. By comparing the current results with other the-oretical estimations, it is found that the unit-cell geometryunderestimates the mass transport coefficient because ofthe lower surface area considered.
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