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Abstract: This study combines theoretical modeling and experimental validation to explore anaerobic
digestion comprehensively. Developing a computational model is crucial for accurately simulating
a digester’s performance, considering various feedstocks and operational parameters. The main
objective was to adapt the anaerobic digestion model 1 (ADM1) simulation code to align with the
laboratory-scale anaerobic digestion reactor’s specifications, especially regarding the liquid–gas
transfer process. Within this computational framework, users may define model parameters and
elucidate processes occurring in compartments reflecting the physical design. The model accurately
predicts total concentrations of chemical oxygen demand (COD) as well as the produced biogas, with
an average difference of less than 10% between experimental and simulated data. This consistency
underscores the reliability and effectiveness of the adapted model in capturing anaerobic digestion
nuances under specified conditions.
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1. Introduction

Biomass residue encompasses the organic fraction found in agricultural and livestock
residues derived from photosynthesis, and can serve as either energy or a material re-
source [1]. Precisely, residual biomass originates from the agricultural sector in various
forms, including crop residues, animal wastes, and agro-industrial by-products. In Greece,
biomass residues are relatively plentiful and thus play a significant role in the energy sector,
with initiatives such as anaerobic digestion projects aimed at utilizing agricultural waste
for energy production. Furthermore, Greece’s rich agricultural landscape provides ample
opportunities for the sustainable management and utilization of biomass residues.

Energy derived from bioprocesses is a significant renewable resource, boasting cost-
effective advantages and the potential to treat high chemical oxygen demand (COD) wastes.
Anaerobic conversions, initially employed in food and beverage production, have evolved
significantly over humanity’s history. Recent decades have witnessed substantial advance-
ments, particularly in high-rate treatment processes for industrial wastewater. The key
advantage of anaerobic processes lies in their capacity for energy production, either directly
(converting chemical energy to electricity) or indirectly (producing biofuels). This favors a
decrease in greenhouse gas emissions, thus contributing to the wide acceptance of anaerobic
digestion for waste treatment and a cleaner environment [2].

Anaerobic digestion (AD) is a controlled procedure yielding a gas mixture, known
as biogas, comprising methane and carbon dioxide. The ratio between these components
depends on raw materials and external impurities. When biogas quality and quantity are
sufficient, it can be oxidized in a fuel cell unit for electricity generation or used directly
in gas burners to produce thermal energy for domestic use. Governments recognize the
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importance of anaerobic digestion, offering financial incentives to farmers for installing
anaerobic units. This is due to the renewable energy produced with minimal environmental
pollution worsening and the reduction in greenhouse gas emissions through controlled
waste management.

In anaerobic digestion, bacteria degrade organic wastes in an oxygen-deprived en-
vironment, resulting in the production of a gas mixture predominantly composed of
methane [3]. Anaerobic co-digestion of various waste materials enhances biogas produc-
tion, increasing methane richness compared to individual materials [4]. AD involves four
complex biochemical stages, along with mechanical or chemical pretreatment to optimize
macronutrient utilization. These stages are categorized into extracellular (pretreatment and
hydrolysis) and intracellular (acidogenesis, acetogenesis, and methanogenesis) to ensure
successful feedstock metabolism into biogas [5].

To develop a robust model for this process, the presented procedures must be imple-
mented, allowing the prediction of biogas production under different conditions. Over
the years, models have evolved from simple single-equation models to more complex
multi-step dynamic models. These complex models consider microbial growth dynamics,
feedstock evolution, and biogas production, incorporating time-dependent processes [6].

AQUASIM is a modeling and simulation program developed for water treatment in
various reactor types [7]. Based on the finite element method, it is a strong and viable tool
for efficient workflow, from preprocessing to final problem solution. This program allows
users to define model parameters and processes occurring in compartments representing
the physical design. The anaerobic digestion model 1 (ADM1), a popular multi-step time-
dependent model, was implemented and presented by Batstone et al. [8] and has been
included as standard in AQUASIM. While ADM1 incorporates dynamics and various state
variables, its complexity poses numerical challenges for real-time implementation [9]. De-
spite a clear understanding of the biochemical mechanisms in the AD process, the specific
pathway of biogas formation remains uncertain. To address these uncertainties, deriving
biogas amounts directly from substrate theoretical yields, combined with measured param-
eters, is a practical approach for estimating biogas production. However, estimating and
measuring parameters can be challenging, time-consuming, laborious, and expensive [9,10].
The present work aims to adapt the ADM1 simulation code, previously implemented in the
software platform AQUASIM, to a laboratory-level AD reactor, as described by Aravani
et al. [11] and Aravani et al. [12].

2. Materials and Methods
2.1. Theoretical Background and Improvements in ADM1

As just stated, the ADM1 tool is a comprehensive model encompassing both physico-
chemical and biochemical processes. Physico-chemical processes involve the modeling
of acid–base reactions and liquid–gas transfer reactions, while biochemical processes
include disintegration and hydrolysis, mixed product acidogenesis, syntropic hydrogen-
producing acidogenesis, hydrogen-utilizing methanogenesis, acetolactic methanogenesis,
and inhibition and toxicity [8].

While a detailed description of the original ADM1 model is available elsewhere [13],
it is pertinent to outline the improvements and modifications made for the purposes of this
project. Specifically, with respect to the physico-chemical processes, the original ADM1
model incorporates both liquid–liquid and liquid–gas processes. However, the model
utilized in this project diverges from the original ADM1 in the treatment of the liquid–gas
transfer process.

As known, H2, CH4, and CO2 constitute the primary gas components significantly in-
fluencing liquid–gas transfer. In the original ADM1 model, an identical value for the overall
mass transfer coefficient multiplied by the specific transfer area (kLa) is recommended for all
gases, given their similar diffusivities. However, considering operational conditions such
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as gas pressure, stirring, temperature, and substrate properties, the coefficient is adjusted
as follows:

kLa =

1
1

ky
+

mi
kx

P
(1)

where ky and kx are the gas-phase mass transfer coefficient and the liquid-phase mass
transfer coefficient, respectively (kmol/m−2 s−1), P is the gas pressure (kPa), mi is the
solubility coefficient of each gas, while i represents each of the three main gas components,
H2, CH4, and CO2. Also, the additional parameters in Equation (1) are as follows:

mi =
Ei
P

(2)

ky =
Dg

R T δg
·
(

P
Pbm

)
(3)

kx =
Dl
δl

·
(

Cm
Cbm

)
(4)

where Ei is Henry’s constant (kPa), R is the gas constant 8.31 (kJ kmol−1 K−1), T is the
temperature (K), Dg and Dl are the diffusion coefficients of the gas and the liquid phase,
respectively (m2 s−1), while δg and δl represent the theoretical liquid film thickness (m)
derived from the two-film theory [3]. Finally, Cm is the concentration (kmol m−3), Cbm is
the logarithmic average of the concentrations of both sides of the stationary fluid layer, and
Pbm is the logarithmic average pressure on both sides of the stationary gas layer.

In this respect, the mass transfer rate of each i_chemical element from liquid to gas phase
(Equation (5)) and vice versa (Equation (6)) is represented by the following expressions:

ri = (kLa)i · (Xi − EiPi) (5)

ri = (kLa)i · (EiPi − Xi) (6)

where Pi and Ei are the partial pressure in the gas phase (Pa) and Henry’s constant
(kmol m−3 Pa−1) of the i_element respectively, while Xi is the molar concentration of
the i_element in liquid phase (kmol m−3).

As for the syngas biomethanation, the reactions that take place are as follows:

CO + H2O → CO2 + H2 ∆G0 = 20 kJ mol−1 (7)

4CO + 2H2O → CH3COOH + 2CO2 ∆G0 = 176 kJ mol−1 (8)

2CO + 2H2 → CH3COOH ∆G0 = 67 kJ mol−1 (9)

CH3COOH → CO2 + CH4 ∆G0 = 31 kJ mol−1 (10)

4H2 + CO2 → CH4 + 2H2O ∆G0 = 130.7 kJ mol−1 (11)

Continuing from the aforementioned processes, carbon monoxide (CO) undergoes dis-
tinct transformations within the anaerobic digestion system, described by Equations (7)–(9).
These reactions illustrate the diverse pathways in which carbon monoxide can be trans-
formed, involving the production of hydrogen, acetate, and other intermediate compounds.
Furthermore, Equations (10) and (11) elucidate the acetolactic and hydrogenotrophic
methanogenesis processes, respectively. These equations describe the conversion of acetate
and hydrogen, respectively, into methane—a crucial component in the biogas produced
during anaerobic digestion. Understanding these reactions is essential for comprehending
the complex biochemical transformations occurring within the system.
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Regarding the biochemical processes, the modifications primarily focus on addressing
syngas inhibition. It is crucial to acknowledge that highly pressurized carbon monoxide
(CO) can be toxic to various microorganisms. Simultaneously, hydrogen (H2) may inhibit
acetogenesis, but it is also consumed during methanogenesis to maintain a low partial
pressure—an essential factor for the acetogenesis process. Therefore, both CO toxicity
and H2 inhibition need to be taken into consideration, since highly pressurized carbon
monoxide can be toxic to various microorganisms [14]. The inhibition factors representing
the deleterious effects of hydrogen can be expressed as follows:

IH2,j =
1

1 +
SH2

KI,H2,j

(12)

where SH2 is the concentration of dissolved H2 in the liquid phase and KI,H2,j is the inhibi-
tion constant of H2 during the biochemical j_process (uptake of butyrate or propionate).
Inhibition of CO can be analytically embodied in the modified ADM1 code to accurately
model the acetogenesis and methanogenesis process and can be presented through the
following model:

ICO,j =
1

1 + SCO
KI,CO,j

(13)

where SCO is the concentration of dissolved CO in the liquid phase and KI,CO,j is the
inhibition constant of CO during the biochemical j_process (uptake of H2 or acetate).

2.2. Experimental

The experimentally estimated/calculated values as well as the experiments validated
here through simulations have been carried out elsewhere [12]. Also, the experimental setup
is presented in detail there. Conversely, constant variables have values obtained from the
literature [15]. Briefly speaking, the AD experiments were conducted in a mesophilic stirred
tank reactor (CSTR) with a controlled temperature of 37 ± 0.5 ◦C and an operating volume
of 750 mL. Temperature regulation was achieved through a thermocouple system and hot
water circulation, ensuring constant conditions throughout the process. The cylindrical
reactor, constructed of double-walled stainless steel, featured a geared motor drive at the
top for continuous agitation. Feedstock, stored refrigerated, was manually introduced to
the methanogenic reactor every 6 h four times daily using a precise plastic gas syringe with
a volume of 50 mL. Biogas production was monitored automatically using a custom device
comprising an engine oil-filled U-tube, an electron valve, and a counter-mechanism. This
setup allowed for the measurement of biogas production by tracking the displacement of a
constant volume of oil displaced by the generated biogas [11,12].

2.3. Simulations

To simulate a realistic scenario of the AD process using the ADM1 model, it is crucial
to clearly define and categorize the parameters in the code. Each parameter should be
appropriately labeled, either as a real list variable or as a constant variable. Notably,
parameters labeled as “real list variable” dynamically change throughout the AD process,
and their values must be experimentally determined.

Table 1 presents the most critical parameters, their categories, and the specified ranges
of values for representing the mixture fed into the reactor [11]. This comprehensive cate-
gorization ensures clarity and accuracy in modeling the dynamic processes of anaerobic
digestion. These parameters play a pivotal role in accurately modeling the dynamic pro-
cesses of anaerobic digestion. By categorizing and specifying the range of values for each
parameter, this comprehensive approach ensures clarity and precision in representing the
complex interactions within the system. This meticulous categorization not only enhances
the understanding of the anaerobic digestion process but also facilitates effective modeling
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and analysis, ultimately contributing to advancements in biogas production and waste
management strategies.

Table 1. Definition of the feed used in ADM1.

Type Symbol Value Units

Soluble

Degradable COD * Real list variable Input_S_COD ~18–33 kg COD/m3

Sugars * Real list variable Input_S_su_in ~8–20 kg COD/m3

Inorganic carbon ** Constant variable Input_S_IC_in 0.005 kmol/m3

Inorganic nitrogen ** Constant variable Input_S_IN_in 0.065 kmol/m3

Particulate

Degradable COD * Real list variable Input_X_COD ~8–33 kg COD/m3

Carbohydrates * Real list variable Input_X_ch_in ~11–41 kg COD/m3

Degradable pCOD * Through equation Input_X_I_in =Input_×_COD-
Input_×_ch_in kg COD/m3

* Based on reactor’s mixture of nutrients during the experiment. ** Default values.

Besides the biomass concentration described above, it is also necessary to estimate as
input parameters the gas flows as well as the inorganic carbon and nitrogen in the reactor.

The volumetric flow rate of the reactor’s feed is a crucial dynamic variable used as
input for the ADM1 code. Regarding the southern Greece spring–summer reactor, for the
initial 117 days, its value remains constant at 37.5 mL per day, manually applied in the
simulation tool. The volumetric flow rate values for the other two reactors were applied
similarly. Precise consideration of the feed is essential, as it directly impacts nutrient balance
in the reactor and consequently total biogas production. It is important to note that the
biomass used here was derived from agricultural residues found in Greece. As described
in [11], these residues in Greece are as follows: durum wheat = 6.2%, maize = 10.7%, other
wheat for crop = 6.7%, edible legumes = 0.2%, other industrial plants = 3.5%, cotton = 8.3%,
potatoes = 1.1%, vegetables = 3.7%, olive trees = 31.7%, citrus trees = 19.2, and other
trees = 8.6%.

COD as a measure of water quality plays a vital role in determining biologically
active substances. Accurate determination of COD values is essential for realistic sim-
ulations of biochemical processes in AD and the resultant biogas production. Figure 1
compares the experimental and simulated total COD concentrations for the southern
Greece spring–summer reactor. Notably, empirical and simulated data exhibit a similar
trend. Quantitively speaking, the correlation between experimental and simulated results
is defined by the averaged relative error, where 10% is the threshold for acceptable agree-
ment. Moreover, for over 60% of the entire period, the differences between simulated
and experimentally obtained COD values were consistently below 9.1%, indicating accept-
able validation for the simulations. This validation is especially noteworthy, given the
complexity of the ADM1 code and potential experimental errors for technical reasons [10].

The results produced by simulations indicate smooth behavior, while the experimental
measurements show significant fluctuations. Experimental results obtained from real-world
observations are subject to various sources of variability and uncertainty. Factors such as
fluctuations in environmental conditions, measurement errors, and inherent biological vari-
ability can lead to significant fluctuations in experimental data, especially when observed
over the same time period. Additionally, experimental setups may introduce discontinu-
ities or disturbances that are not accounted for in simulations, further contributing to the
observed fluctuations. These behaviors for both simulated and experimental results are
consistently encountered in all the following figures.
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Figure 1. Experimentally measured and simulated COD values in the southern Greece
spring–summer reactor.

Figure 2 displays the simulated and measured biogas volumetric flow rate over
120 days of operation for the southern Greece spring–summer reactor. The simulated
biogas curve closely mirrors the experimental trends, since the observed differences are
sufficiently low to conclude that the model can satisfactorily predict methane production.
As mentioned earlier, these discrepancies can be attributed to experimental inaccuracies
for technical reasons [10,16] in conjunction with the complexity of the ADM1 code, which
encapsulates estimators and model-based controllers to predict real-time AD evolution [16].

Reactions 2024, 5, FOR PEER REVIEW 6 
 

introduce discontinuities or disturbances that are not accounted for in simulations, further 
contributing to the observed fluctuations. These behaviors for both simulated and exper-
imental results are consistently encountered in all the following figures. 

 
Figure 1. Experimentally measured and simulated COD values in the southern Greece spring–sum-
mer reactor. 

Figure 2 displays the simulated and measured biogas volumetric flow rate over 120 
days of operation for the southern Greece spring–summer reactor. The simulated biogas 
curve closely mirrors the experimental trends, since the observed differences are suffi-
ciently low to conclude that the model can satisfactorily predict methane production. As 
mentioned earlier, these discrepancies can be attributed to experimental inaccuracies for 
technical reasons [10,16] in conjunction with the complexity of the ADM1 code, which 
encapsulates estimators and model-based controllers to predict real-time AD evolution 
[16]. 

 
Figure 2. Biogas volumetric flow rate in the southern Greece spring–summer reactor. 

At this point, it is essential to identify the produced CH4 and CO2 in the reactor, which 
are the main components of the final produced biogas. This calculation reveals the 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100 110 120

CO
D 

(k
g/

m
3 )

Days

EXPERIMENTAL SIMULATED

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120

to
ta

l b
io

ga
s (

L/
d)

Days

EXPERIMENTAL SIMULATED

Figure 2. Biogas volumetric flow rate in the southern Greece spring–summer reactor.

At this point, it is essential to identify the produced CH4 and CO2 in the reactor,
which are the main components of the final produced biogas. This calculation reveals the
purification of the biogas in CH4 and can be shown by the partial pressure of each element
(p_element_adjust), which is calculated as a percentage of the total pressure of headspace
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(p_headspace). Initially, the ADM1 code calculates the pressures of each element through
the expressions:

p_CH4 =
S_CH4

64
· R · T (14)

p_CO2 = S_CO2 · R · T (15)

where S_CH4 is the quantity of methane in kg COD/m3, S_CO2 is the quantity of carbon
dioxide in M (kmol/m3), R (=0.08314 bar M−1 K−1) is the constant of ideal gases, and T (K)
is the temperature of the reactor.

The graphs for the partial pressures of the southern Greece spring–summer reactor
are presented in Figure 3, and their values were calculated through the ADM1 code using
the following equations:

p_CH4_adjust =
p_CH4

p_headspace
· 100 (16)

p_CO2_adjust =
p_CO2

p_headspace
· 100 (17)
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Figure 3. The simulated adjusted gas pressures of the southern Greece spring–summer reactor.

Consistent with expectations, the gas pressures for methane and carbon dioxide
maintain an almost constant difference throughout the entire experimental period, with the
sum of these two values approximating 100%. This pattern was observed in the southern
Greece reactor for both the spring and summer periods as well as the fall and winter ones.

3. Results and Discussion

Figure 4 displays the simulated and observed pH levels in the southern Greece
spring–summer reactor. The anaerobic digestion process is highly sensitive to variations in
pH, emphasizing the critical role of modeling pH values. Although pH sometimes is not
considered as an independent value, the ADM1 code models pH in the reactor by relying
on the reaction producing carbonic acid from CO2 and H2O. Although this method does
not precisely replicate experimental pH values, the simulated pH trends closely align with
the observed patterns. The ADM1 model strikes a pragmatic balance between complexity
and practical applicability in simulating anaerobic digestion processes, particularly in its
treatment of pH.



Reactions 2024, 5 345

Reactions 2024, 5, FOR PEER REVIEW 8 
 

complexity and practical applicability in simulating anaerobic digestion processes, partic-
ularly in its treatment of pH. 

Consequently, although the simulated pH in the reactor may not precisely align with 
the experimental values, both curves generally exhibit a similar trend. 

 
Figure 4. pH in the southern Greece spring–summer reactor. 

For a comprehensive model validation, numerous additional simulations were con-
ducted for the reactors established for both southern and northern Greece. The compari-
son between theoretical and experimental results encompassed biogas production (Fig-
ures 5 and 6), COD evolution (Figures 7 and 8), and pH levels in the reactors (Figures 9 
and 10). This extensive comparison further strengthens the validation process, offering a 
holistic assessment of the model’s predictive capabilities across different reactors and op-
erational conditions. 

 
Figure 5. Biogas production for the southern Greece fall–winter reactor. 

6

6.5

7

7.5

8

0 10 20 30 40 50 60 70 80 90 100 110 120

pH

Days

EXPERIMENTAL SIMULATED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180

bi
og

as
 (L

/d
)

Days

EXPERIMENTAL SIMULATED

Figure 4. pH in the southern Greece spring–summer reactor.

Consequently, although the simulated pH in the reactor may not precisely align with
the experimental values, both curves generally exhibit a similar trend.

For a comprehensive model validation, numerous additional simulations were con-
ducted for the reactors established for both southern and northern Greece. The com-
parison between theoretical and experimental results encompassed biogas production
(Figures 5 and 6), COD evolution (Figures 7 and 8), and pH levels in the reactors
(Figures 9 and 10). This extensive comparison further strengthens the validation process,
offering a holistic assessment of the model’s predictive capabilities across different reactors
and operational conditions.

Reactions 2024, 5, FOR PEER REVIEW 8 
 

complexity and practical applicability in simulating anaerobic digestion processes, partic-
ularly in its treatment of pH. 

Consequently, although the simulated pH in the reactor may not precisely align with 
the experimental values, both curves generally exhibit a similar trend. 

 
Figure 4. pH in the southern Greece spring–summer reactor. 

For a comprehensive model validation, numerous additional simulations were con-
ducted for the reactors established for both southern and northern Greece. The compari-
son between theoretical and experimental results encompassed biogas production (Fig-
ures 5 and 6), COD evolution (Figures 7 and 8), and pH levels in the reactors (Figures 9 
and 10). This extensive comparison further strengthens the validation process, offering a 
holistic assessment of the model’s predictive capabilities across different reactors and op-
erational conditions. 

 
Figure 5. Biogas production for the southern Greece fall–winter reactor. 

6

6.5

7

7.5

8

0 10 20 30 40 50 60 70 80 90 100 110 120

pH

Days

EXPERIMENTAL SIMULATED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180

bi
og

as
 (L

/d
)

Days

EXPERIMENTAL SIMULATED

Figure 5. Biogas production for the southern Greece fall–winter reactor.



Reactions 2024, 5 346Reactions 2024, 5, FOR PEER REVIEW 9 
 

 
Figure 6. Biogas methane production for the northern Greece reactor. 

The comparison depicted in Figures 5 and 6 demonstrates good qualitative agree-
ment, underscoring the prowess of ADM1 as a robust simulation tool for predicting alter-
native fuel production through digestion processes. However, the agreement slightly di-
minishes when scrutinizing COD results due to the intricate relationship between the pa-
rameters involved and COD itself, leading to errors of high order. Nonetheless, the agree-
ment in pH measurements remains very good, affirming the model’s accuracy in predict-
ing pH variations within the reactors. This comprehensive evaluation provides a nuanced 
understanding of the model’s performance across different output parameters, enhancing 
its reliability for predicting anaerobic digestion outcomes. 

 
Figure 7. COD per day for data from the southern Greece fall/winter reactor. 

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

to
ta

l b
io

ga
s (

L/
d)

Days

EXPERIMENTAL SIMULATED

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180

CO
D 

(k
g/

m
3 )

Days

EXPERIMENTAL SIMULATED

Figure 6. Biogas methane production for the northern Greece reactor.

Reactions 2024, 5, FOR PEER REVIEW 9 
 

 
Figure 6. Biogas methane production for the northern Greece reactor. 

The comparison depicted in Figures 5 and 6 demonstrates good qualitative agree-
ment, underscoring the prowess of ADM1 as a robust simulation tool for predicting alter-
native fuel production through digestion processes. However, the agreement slightly di-
minishes when scrutinizing COD results due to the intricate relationship between the pa-
rameters involved and COD itself, leading to errors of high order. Nonetheless, the agree-
ment in pH measurements remains very good, affirming the model’s accuracy in predict-
ing pH variations within the reactors. This comprehensive evaluation provides a nuanced 
understanding of the model’s performance across different output parameters, enhancing 
its reliability for predicting anaerobic digestion outcomes. 

 
Figure 7. COD per day for data from the southern Greece fall/winter reactor. 

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

to
ta

l b
io

ga
s (

L/
d)

Days

EXPERIMENTAL SIMULATED

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180

CO
D 

(k
g/

m
3 )

Days

EXPERIMENTAL SIMULATED

Figure 7. COD per day for data from the southern Greece fall/winter reactor.

The comparison depicted in Figures 5 and 6 demonstrates good qualitative agreement,
underscoring the prowess of ADM1 as a robust simulation tool for predicting alternative
fuel production through digestion processes. However, the agreement slightly diminishes
when scrutinizing COD results due to the intricate relationship between the parameters
involved and COD itself, leading to errors of high order. Nonetheless, the agreement
in pH measurements remains very good, affirming the model’s accuracy in predicting
pH variations within the reactors. This comprehensive evaluation provides a nuanced
understanding of the model’s performance across different output parameters, enhancing
its reliability for predicting anaerobic digestion outcomes.
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4. Conclusions

The ADM1 model, as applied and appropriately modified in this project, stands out as
the most comprehensive model for simulating the anaerobic digestion process, providing
a robust foundation for the future development of intricate kinetic models. Despite the
inherent complexity of ADM1 and the multitude of input parameters required, this study
demonstrates its efficacy in simulating laboratory-scale anaerobic reactors.

The model exhibits a high degree of accuracy in predicting total COD concentrations
in the reactors, with a minimal difference of less than 9.1% between experimental and
simulated data. Additionally, methane production was satisfactorily forecast by the ADM1
code, yielding values within the same order of magnitude as experimental data. The
simulation of pH levels, acknowledged as a challenging aspect, attains a high level of
agreement with experimental observations. Throughout the experiment, the difference
between experimental and simulated pH values remains generally below 5%, signifying
a high level of accuracy and acceptability. This attests to the ADM1 model’s capability to
successfully predict and simulate key parameters in anaerobic digestion processes.

The adaptable modified ADM1 model holds potential for extending its application
beyond agriculture residues to various industrial and municipal waste streams. For suc-
cessful application, it is necessary firstly to carry out a specific number of experiments to
estimate some of the necessary parameters involved (biomass composition, flowrate). Then,
by applying the crucial values of certain parameters to the modified algorithm, it could be
rather easy to obtain simulated results regarding biogas properties.
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