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Abstract
This study presents a comparative study of Extreme Value Theory (EVT) concepts, applied to wildland fire data collected 
in Greece over a 25-year period (1983 − 2007). The dataset comprises 28,658 fire records from the Hellenic Forest Service, 
including details such as coordinates and size of the burned area. The primary objective is to develop a method for quan-
tifying extreme values and estimating return periods and thus translating fire size into a more interpretable measure of fire 
significance. The study applies and evaluates both the block maxima generalized extreme value (GEV) approach and the 
peaks over threshold (POT) approach, using frequentist and Bayesian frameworks. The results from the GEV distribution 
indicate an asymptotic leveling off at a constant value, suggesting that the burned area size remains unchanged over time. 
This outcome is clearly unrealistic, implying that the GEV model provides reliable predictions only for time frames closely 
aligned with the period during which the empirical data were collected. Although conceptually different, the Bayesian POT 
approach also demonstrates unrealistic behavior over longer periods, with the burned area size continuously increasing along 
a power-law curve. In contrast, the frequentist POT model performs well with the available data, providing a more realistic 
and accurate representation of the increasing burned area size over time. According to the frequentist POT approach, the 
largest forest fire ever recorded in Greece (Dadia Forest in 2023)—covering approximately 95,000 hectares—corresponds 
to a return period of 2000 years. Over the past few years, many wildland fires in Greece have resulted in exceptionally large 
size of burned areas.
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1  Introduction

When a wildfire occurs and the event is announced, espe-
cially to the general public, the size of the fire becomes one 
of the most important characteristics communicated. This 
statistical value provides people with an understanding of 
the fire’s magnitude and significance. To achieve this, indi-
viduals already have an idea of what a particular fire size 
means in terms of scale, based on their empirical knowledge 
derived from the fire history of the area. In essence, the inter-
pretation of fire size varies based on the local distribution of 
fire sizes to which the area is exposed. For example, a 5000 

Ha fire would have a different meaning if occurred in South-
ern Europe, Northern Europe, Africa, or North America and 
also depending on whether it occurred in the Mediterranean, 
Northern, or Savannah ecosystems. To overcome the limita-
tions associated with characterizing fire events solely based 
on burned area, an alternative approach involves integrating 
the concept of the return period (also referred to as recur-
rence or repeat interval), which accounts for the statistical 
rarity and temporal frequency of such events. This statistical 
measure, calculated using the Extreme Value Theory (EVT), 
corresponds to the average time between extreme events [1]. 
If a fire size of 5000 Ha corresponds to a return period of 
50 years, then it can be described as a “50-year event” rather 
than a “5,000-Ha event.” Depending on the local distribution 
of fire sizes, the 5000-Ha fire would have a different return 
period if occurred in Southern Europe, Northern Europe, 
Africa, or North America, or in the Mediterranean, Nordic, 
or Savannah ecosystems. This approach better reflects the 
expected fire magnitude based on the local fire history [2].
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From a statistical perspective, Extreme Value Theory 
(EVT) represents the most rigorous and specialized method-
ology for characterizing extreme deviations from the central 
tendency of a probability distribution. Traditional statisti-
cal approaches are primarily concerned with the typical or 
average behavior of data series, offering limited insight into 
the tail behavior where rare events reside. In contrast, EVT 
is expressly developed to model the stochastic behavior of 
extreme observations, providing a mathematically robust 
framework for quantifying the likelihood and recurrence 
intervals of infrequent but potentially high-impact events 
[3]. Its applicability extends across diverse scientific and 
engineering disciplines, particularly in scenarios involving 
events that substantially exceed historical observations in 
magnitude or rarity [4]. Crucially, the accurate estimation of 
return periods for such extremes is of paramount importance 
[5], often superseding the relevance of their mere probability 
of occurrence, as it informs long-term risk assessments and 
strategic planning under uncertainty. Extreme Value Theory 
(EVT) admits both frequentist and Bayesian formulations, 
allowing for flexible inference under varying epistemologi-
cal frameworks. In the context of univariate modeling of 
rare events—where the stochastic process is characterized 
by extreme deviations—three principal methodologies are 
prevalently employed: the GEV distribution for block max-
ima, the generalized Pareto distribution (GPD) for threshold 
exceedances, and the Poisson point process (PP) framework, 
which often incorporates GEV characteristics to model the 
occurrence and magnitude of extremes in continuous time or 
space [6]. Each of these approaches is grounded in asymp-
totic theory and is distinguished by its suitability for differ-
ent sampling schemes and inferential objectives. The math-
ematical foundations, model assumptions, and conditions 
for applicability of these formulations will be rigorously 
examined in the forthcoming sections. Considerable efforts 
have been directed towards the application of extreme value 
analysis to wildfire events. Beverly and Martell [2] utilized 
EVT to characterize dry spell and fire size extremes in both 
the east and west divisions of the Boreal Shield ecozone in 
Ontario. They estimated the return time of a 30-day dry spell 
event and a 10,000 Ha fire, highlighting substantial differ-
ences between the compared event locations [2]. In the con-
text of characterizing large fire behaviors, Jiang and Zhuang 
[7] employed the GEV distribution, the GP distribution, and 
the GEV distribution combined with a Poisson point process 
representation. They applied these methods to fit Canadian 
historical fire data spanning from 1959 to 2010. Their find-
ings indicated notable disparities between anthropogenic and 
natural extreme fires in terms of extreme statistics. However, 
fire return levels aligned well with observations in relation 
to the magnitude and frequency of extreme events [7]. de 
Zea Bermudez et al. [8] modeled the spatial and temporal 
patterns of large fire events in Portugal from 1984 to 2004 

using the POT approach. Their analysis revealed distinct 
regional variations in return periods [8]. Moreover, drawing 
from 64,474 fire records collected between 1991 and 2007 
in Mississippi, Sun and Tolver [1] employed extreme value 
statistics, specifically the POT approach. Their study con-
cluded that wildfires in Mississippi followed a GP distribu-
tion [1]. Lastly, Evin et al. [9] employed a Bayesian approach 
to EVT, utilizing it to evaluate fire policy in France. They 
incorporated the return period of extreme events to assess 
policy effectiveness in terms of spatial and temporal discre-
tization [9]. Finally, the POT method, combined with clas-
sification techniques, has been applied to cluster time series 
data of daily area burned in 18 Portuguese districts from 
1980 to 2010. Their results showed that the distributions of 
area burned are heavy-tailed with considerable density in the 
tail, which indicates a non-negligible probability of occur-
rence of days with very large area burned [10].

Given that wildfires with extensive burned areas are 
important events in the context of the planet’s evolving 
climate and landscapes, their accurate assessment of rar-
ity is of substantial scientific and societal importance. This 
information could play an important role in policy making, 
aiding in the prevention of such events and facilitating the 
implementation of necessary actions, including training fire 
crews, maintaining tactical aircraft and trucks, and educating 
support forces [11]. This study aims to apply and explore 
Extreme Value Theory approaches to wildland fire obser-
vations collected over a period of 25 years from 1983 to 
2007 in Greece. The dataset includes 28,658 fire observa-
tions obtained from the Hellenic Forest Service and reports 
several parameters, including the x and y coordinates, the 
size of the burned area, and others. Our primary objective 
is to develop a methodological approach for quantifying 
extreme values and assessing the return period. To this end, 
the size of a fire is translated into a return period, providing 
people with a better understanding of the fire’s magnitude 
and significance. We apply and evaluate the block maxima 
GEV approach and the POT approach, both frequentist and 
Bayesian.

2 � Theoretical Background

2.1 � Extreme Value Theory

Extreme Value Theory (EVT) constitutes a specialized 
domain within probability theory and statistical inference 
that systematically characterizes the stochastic behavior of 
observations located in the distributional tails. Rather than 
addressing the central tendency or variance of a dataset, 
EVT is explicitly formulated to model rare, high-impact 
events that manifest as extreme deviations from the expected 
value of an underlying distribution. The framework enables 
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rigorous quantification of the likelihood and severity of such 
outliers, which may represent maxima or minima within a 
finite sample. In operational terms, EVT facilitates the esti-
mation of tail probabilities associated with observations that 
surpass all previously recorded values in a univariate time 
series [12]. More precisely, it allows for the derivation of the 
asymptotic distribution of exceedances or block maxima, 
thereby enabling probabilistic assessments of future extreme 
events in relation to historically observed data [13]. In gen-
eral, we focus on the behavior of a random variable.

where X1, X2 , …, Xn is an ordered sequence of values from 
an independent random variable X and n is the number of the 
different values, assumed to follow a distribution function.

Obviously, the above Eq. (1) can be easily used for the 
case of minimum rather than maximum. By denoting the 
distribution function of Mn values as F, it is rather straight-
forward that the probability P for Mn to be lower than a value 
z is given as

As far as F is generally an unknown function, the approxi-
mate families of P should be identified, based only on the 
extreme data, and by considering that n → ∞. From a fre-
quentist point of view, two widely used methods study this 
statistical behavior. The first method has been developed in 
the context of deriving singularities (maxima or minima) 
by applying the GEV distribution [14]. The second method 
identifies values that exceed or fall below a certain threshold, 
referred as POT method [15]. Both approaches are valid if 
and only if the random variable is independently and iden-
tically distributed [16]. The assumption of independence 
might be violated when extreme values are grouped in clus-
ters, while the assumption of identically distributed observa-
tions can be relaxed when non-stationary processes such as 
trends render the assumption invalid [17]. Both methods are 
presented in detail in the next section.

An alternative to the frequentist approach is the Bayes-
ian method, where prior distributions are chosen for the 
parameters of the GP distribution (GPD), and posterior dis-
tributions are calculated, providing a measure of expected 
uncertainty [18].

2.2 � Extreme Value Theory Approaches

2.2.1 � GEV Approach

The conventional EVT considers maxima (or minima) over 
specific blocks of time, known as block maxima/minima. By 
incorporating the Extermal Types Theorem, also referred 
to as the Fisher-Tippett-Gnedenko Theorem [19], along 

(1)M
n
= max

{

X1,X2, … ,X
n

}

,

(2)P
(

Mn < z
)

= [F(z)]n

with the aforementioned concept for defining the distribu-
tion function, the maxima in Eq. (1) follow the generalized 
extreme value distribution, given as

where μ is the location parameter, σ is the scale parameter, 
and ξ is the shape parameter. In accordance with the above-
mentioned theorem, the value of ξ outlines the family of 
non-degenerate distributions that G(z) belongs to. Precisely, 
if � = 0 then G(z) follows the Gumbel distribution, if 𝜉 > 0 
then G(z) follows the Fréchet distribution and, if 𝜉 < 0 then 
G(z) follows the Weibull distribution [13].

To apply the GEV distribution to a dataset, obtaining var-
ious conventional yet necessary statistical quantities is also 
required. Specifically, one must estimate the log-likelihood, 
along with the variance–covariance matrix, to calculate the 
standard errors for the parameters μ, σ, and ξ, as well as 
the 95% confidence intervals for them. Additionally, it is 
important to identify the profile log-likelihood for ξ and, 
finally, to approximate confidence intervals for pre-defined 
return levels [20]. The GEV distribution is typically fitted to 
block maxima (or minima), and it is worth noticing that the 
main drawback of the block maxima approach is that it does 
not utilize all the available information, especially about 
the upper tail of the distribution, since only each maximum 
value is able to be used. As a result, it inaccurately repre-
sents the needed statistical information [21].

2.2.2 � POT Frequentist Approach

This approach focuses on the number of extreme events that 
have values higher than a certain threshold. More specifi-
cally, considering the random variable defined in Eq. (1) and 
assuming that Mi satisfies the GEV distribution (Eq. (3)), 
then the distribution function of the transformed variable 
X − u for sufficiently large u must adhere to the constraint

where y follows the GP distribution of the form:

where

 Note that the parameters μ, σ, and ξ have been defined 
previously (refer to Eq.  (3) and the related discussion 
there). It is interesting to provide a simple description of 
how ξ influences the distribution: if ξ < 0, then the distri-
bution is bounded; if ξ = 0, the distribution is light-tailed 

(3)G(z) = exp

{

−

[

1 + �

(

z − �

�

)]−
1

�

}

(4)P(Xi − u > y | Xi > u)

(5)H(y) = 1 −

(

1 +
�y

�

)−
1

�

(6)� = � + �(u − �)
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(exponential); and if ξ > 0, the distribution is heavy-tailed 
(Pareto).

To perform a POT estimation of the GEV distribution 
(Eq. (3)), it is essential to determine a reasonable threshold 
u [22]. To avoid empirical estimation based on the raw data 
and the physical problem under consideration, a maximum 
likelihood estimation should be conducted by fitting a GPD 
to the data series. This implies that, above a specific thresh-
old at which the GPD assures a valid approximation, the 
mean residuals should be roughly linear with u (Eq. (4)). 
Consequently, a plot of mean residuals can be quite use-
ful for defining the appropriate threshold. Following this, 
a 95% confidence interval must be recalculated based on 
the maximum likelihood data. Finally, the return levels 
can be derived using the same methodology as in the GEV 
approach [23].

The accuracy of the POT approach strongly depends on 
the threshold value, whose identification is usually under 
question due to the empiricism involved here [24]. To over-
come this, a balance between bias and variance [25] should 
be assured, either by applying the mean residual life plot and 
identifying the point at which this plot becomes linear [26], 
or by comparing the fitting of the GP distribution across a 
range of different thresholds while adjusting the correspond-
ing parameters [1].

2.2.3 � POT Bayesian Approach

As far as frequentist statistical methods present some draw-
backs for the treatment of extreme values, some Bayesian 
approaches are also available [9]. A typical application of 
Bayesian approach initialized by putting all the parameters 
affecting the problem to a vector � . Then, each element of 
the vector is treated as random variable that is assumed to 
follow a specified probability density distribution (named 
“prior distribution”). This prior distribution is the distribu-
tion that the vector elements follow, before related to any 
data. Then, the likelihood of f (�) is expressed as f (x|�) and, 
by applying Bayes’ Theorem, is

to the extent that x is a discrete random variable. This f (�|x) 
is the posterior distribution of �.

Precisely, the direct computation of the denominator 
in Eq. (7) can be tricky. As a result, Markov-chain Monte 
Carlo (MCMC) techniques are frequently employed to inves-
tigate the quality of fitting that the simulated values present 
regarding the posterior distribution. A common practice to 
produce an evaluated fitting is the utilization of the Metropo-
lis–Hastings algorithm within the MCMC procedure. This 
algorithm generates and accepts new samples for f (�|x) in a 

(7)f (�� x) =
f (�)f (x�� )

∑

� f (�)f (x�� )

randomized manner [27]. Ultimately, the Bayesian approach 
also facilitates the estimation of return levels, based on the 
maximum likelihood analysis, as below discussed.

2.2.4 � Return Levels

The return period represents the expected average interval 
between occurrences of extreme events. It is mathematically 
derived as the inverse of the exceedance probability, which is 
itself estimated within a defined confidence interval. In the 
framework of EVT, specific emphasis is placed on deriv-
ing return levels, which correspond to quantiles associated 
with a given return period [18]. For calculating return levels 
over a specific period of years, we employ the approach pre-
sented by Sun and Tolver [1]. When considering an event as 
extreme (regardless of the method used for characterization), 
let us denote the desired return period as N years and the 
corresponding return level as xN. This implies that the prob-
ability of xN being exceeded in any given year is P = 1/N.

The specific return level xN is anticipated to be surpassed 
on average once every N years. In this context and for a given 
extreme values distribution, characterized by parameters σ 
and ξ, the N-year return level associated with m observations 
( xN

m
 ) can be expressed as:

where ny is the number of observations per year. Note here 
that the above theoretical approach stands for both GEV 
and POT frequentist methods, where μ, σ, and ξ are the 
parameters of either GEV or GP distributions. For the case 
of Bayesian approach, a prior distribution can be described 
by parameters μ, σ, and ξ, where Monte-Carlo algorithms 
usually are applied to obtain the corresponding posterior 
distribution, and therefore, the return level in analogy to 
Eq. 8 [28]. To summarize the return period concept, it serves 
as a metric for the extremeness of an event: the greater the 
return period, the rarer the event.

3 � Materials and Methods

3.1 � Study Area and Data

3.1.1 � Study Area

Greece is situated at the end of the Balkan Peninsula and 
stretches between latitudes 34° and 43° north, and longitudes 
19° and 28° east (Fig. 1). The country covers an approxi-
mate area of 132,000 km2, with a total population of nearly 
10.5 million people, based on the 2021 census data provided 
by the Hellenic Statistical Authority. The Greek climate is 

(8)xN
m
= u +

𝜎

𝜉

[

NnyP
(

Xi > u
)𝜉

− 1

]



Quantifying the Rarity of Extreme Wildfires: Translating Fire Size into Return Period

mainly Mediterranean, with a large range of variations due 
to complex terrain. The dominant vegetation types affected 
by fires, according to official fire records between 1985 
and 2004 (Hellenic Forest Service), are phryganic ecosys-
tems (32.34% of the total burned area), Pinus halepensis 
(15.43%) and Pinus brutia (6.17%) forests, Quercus coccif-
era shrublands (12.22%), and grasslands (7.36%). Addition-
ally, 10.34% of the total burned area was recorded in forests 
under regeneration, where no information on the dominant 
affected vegetation types was provided [29].

3.1.2 � Wildland Fire Observations

The fire database used in this study consists of fire events 
occurred in Greece during the period 1983–2007. The 
25-year database contains in total 28,658 fire events with 

many parameters that have been recorded during each fire 
event and attached like for example the area burned, the date, 
and others. Additionally, the x and y coordinates recorded in 
latitude and longitude using degrees and first minutes have 
been registered and helped to position the fire events into a 
map (Fig. 1). This positional information helped us to regis-
ter the fire events geographically. Histogram data plots and 
aggregated statistics to create the total annual burned area of 
the considered time period are shown in Fig. 1.

To apply the EVA methods, data pre-processing is nec-
essary. Starting with the GEV approach, the block maxima 
has been identified and recorded (Fig. 2). The block maxima 
approach in Extreme Value Theory (EVT) consists of divid-
ing the observation period into non-overlapping periods of 
equal size and restricts attention to the maximum observa-
tion in each period [30]. The block maxima in our study 

Fig. 1   a the study area, Greece, b the wildland fire ignition points, c histogram data plot of the area burned, and d annual total burned area



	 N. Koutsias, F. A. Coutelieris 

were considered on a yearly basis due to the seasonality of 
the fire events within the year. There are several months dur-
ing one single year when no incidents occur, as for example 
mainly during the winter. On the other hand, block sizes 
higher than 1 year correspond to available data less than 25, 
which is a very limited amount to obtain accurate statisti-
cal estimations. As mentioned before, the POT method is 
based on the use of a threshold to isolate values considered 
extreme from the rest of the data and create a model for 
the extreme values by considering the tail of all the val-
ues that exceed this threshold. In general, data exceeding 
the threshold approximate to a general Pareto distribution 
[31]. The thresholded data used in this study are presented 
in Fig. 2. Regarding the Bayesian approach, it involves the 
derivation of posterior distributions. This requires defining 
prior distributions and utilizing Markov Chain Monte Carlo 
(MCMC) methods for sampling. Finally, the comparison of 
the prior with the posterior distribution is achieved empiri-
cally through the relative Q-Q plots.

It is also worth noticing that the results should be checked 
against the geographical (location) dependence, as far as 
the non-stationarity assumption is crucial for both GEV and 
GP distributions that are employed in the analysis presented 
here. More precisely, the block maxima method on the col-
lated fire size data will choose the yearly maximum from the 
location with the largest fire size only, so the resulting GEV 
distribution is only appropriate for a single location where 
the maximum-maximums occur. Similarly, for the GPD, a 
high threshold choice will ignore locations with lower fire 
size, even if the lower fire size is extreme for those areas. 
Figure 3 shows the spatial distribution of the size of the 

burned area for each fire ignition point and the longitudinal 
and latitudinal trends of the maximum values of the size 
of the fires. It seems that there is not any significant trend, 
therefore, the stationarity in our data seems that it is not a 
real problem. The above assures that the resulting distribu-
tions estimate return periods and return levels that are not 
locationally dependent.

Finally, for the POT approach, the assumption of abso-
lutely no clustering of the above-threshold data values has 
been also checked through an estimated Extremal Index as 
Sun and Tolver (2012). Precisely, we estimated the Exter-
nal Index both annually and for the whole data set, finding 
values high enough to ensure independence. These values 
vary between 0.46 the lowest and 1.0 the highest, while the 
overall average value for the whole data in our work set is 
around 0.39.

3.2 � Methodology

3.2.1 � Applying the Extreme Value Theory

From a technical standpoint, the statistical analyses and 
graphical representations were conducted using the R pro-
gramming language [32], which is universally acknowledged 
as one of the optimal environments for statistical computa-
tion and visualization due to its vast repository of well-estab-
lished and rigorously assessed subroutines that are freely 
distributed. The preparation of raw data for extreme value 
analysis in R is a nuanced process that demands careful con-
sideration of data quality, distributional assumptions, and 
the specific requirements of the chosen statistical methods. 

Fig. 2   Data preparation to run 
the Extreme Value Theory 
approaches (i) “Fit GEV to 
Block Maxima” (upper figure) 
and (ii) “Peaks Over Threshold 
Approach” using the frequen-
tist and the Bayesian approach 
(lower figure)
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Therefore, it involves a systematic and meticulous process 
to ensure the reliability and accuracy of the subsequent sta-
tistical models, particularly those related to GEV, POT, and 
Bayesian approaches [33]. The initial step includes data 
cleaning, addressing any missing or erroneous values, and 
ensuring a consistent time series or distribution for analysis. 
Once cleaned, data is often transformed (i.e., by log func-
tion), if needed, to satisfy distributional assumptions or sta-
bilize variance.

Conceptually, our emphasis lies in interpreting the prob-
ability to observe specific magnitudes of burned areas into 

a quantifiable measure of the rarity of such occurrences. We 
achieve this by utilizing the concept of the return period, 
derived from extreme value analysis, as above discussed. 
Essentially, the return period estimates the time expected 
for the re-appearance of a specific event, recorded through 
the value of the burned area.

To validate the accuracy of our model against real data, 
we initiate the process with a comprehensive four-plot visu-
alization. The initial component involves the presentation of 
two quantile–quantile (Q-Q) plots, which serve as effective 
tools for assessing the congruence between two distinct data 

Fig. 3   The spatial distribution of the size of the burned area for each fire ignition point and the longitudinal and latitudinal trends of the maxi-
mum values of the size of the fires
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sets. In essence, a quantile represents the proportion of data 
points within a dataset that are below a specified threshold. 
When comparing two sets of data originating from the same 
distribution, the points on the Q-Q plot should closely follow 
a diagonal line at a 45° angle. Deviations from this reference 
line indicate potential disparities between the distributions 
of the two datasets. Notably, substantial deviations from this 
line of equality may suggest that the two datasets have been 
generated from dissimilar distributions. The third plot visu-
ally illustrates the level of alignment between the data model 
and the empirical distribution function (i.e., how closely the 
data model or satisfies the empirical distribution function). 
From a qualitative point of view, a higher degree of prox-
imity between the two depicted curves signifies enhanced 
accuracy of the model. It is important to acknowledge that 
the bandwidth showcased on the same plot serves as an indi-
cator of the desired level of conformity between the den-
sity and the distribution. Finally, the fourth plot depicts the 
return level plot, a graphical representation of the level that 
is expected to be exceeded by the process on average once in 
T-years against (the logarithm of) return period T. Maximum 
likelihood estimation is shown by the solid black line on the 
plots while the gray dashed lines are approximate pointwise 
95% confidence intervals. If there are n points in each data 
set, the largest point will correspond to the empirical n-year 
quantile, the second largest to the empirical (n − 1)-year 
empirical quantile, and so forth [34].

3.2.2 � Applying the Extreme Value Theory to Real‑World 
Cases

In this study, we apply the Extreme Value Theory (EVT) as 
a method to analyze and quantify the magnitude of unprec-
edented wildfire events occurred in Greece, one in Euboea 
(2021) and one in Dadia (2023). As already underlined, the 
study and especially the prediction of when a catastrophic 
fire incident is expected, is of great scientific and societal 
importance, especially regarding the extreme values they 
might present.

4 � Results

4.1 � The Extreme Value Theory Models

The results of the GEV approach that has been applied using 
the function fevd() from the extRemes package [35] are 
graphically presented in Fig. 4. The q-q plots indicate that 
data following GEV distribution is in an acceptable agree-
ment with deviations observed at low and high values of 
burned area size along the regression line. Furthermore, the 
comparison between modeled data and empirical distribu-
tion shows specific insufficiencies, especially for not being 

able to capture the second peak. Finally, the estimations of 
return period presents similar divergences for both low and 
high return period values. This is expected due to the limited 
amount of the length of the available time series data; in the 
GEV, each time interval within the time series is represented 
by one single value (the maximum).

The results for the POT are graphically presented in 
Fig. 5. In this case, the q-q plots indicate that data follow 
the model distribution in a very good agreement except for 
very high sizes of burned area where certain deviations are 
observed. Furthermore, the comparison between modeled 
data and empirical distribution seems to be good for values 
higher than the threshold. Finally, the accuracy of the return 
period is good, even for high return periods (> 50 years) 
since all the values, higher than the threshold, are involved 
in the calculations. The above results suffer from the empiri-
cism that is used to select the appropriate threshold, a pro-
cess that introduces a level of arbitrariness in the method 
itself. To overcome this weakness and to obtain an appro-
priate threshold value, based on a robust scientific approach 
rather than empirical estimations, some work is necessary, 
as described below [36]. Figure 6 shows the excess of the 
dataset’s mean value over the selected threshold in terms of 
likelihood confidence interval. In our case, it is depicted that 
values of the threshold higher than 8 indicate a wider inter-
val of confidence, thus producing less reliable results. The 
latter becomes clear through the representation of the effect 
of the threshold’s choice over the parameters of distribution, 
i.e., over both the shape and obviously the modified shape, 
a parameter introduced to describe the GP distribution that 
the excess should follow [24]. Again, the variation of param-
eters, corresponding to the uncertainty of the distribution 
and therefore the difficulty in matching the available data, 
becomes significant for threshold values > 8.

The results of the POT approach when the Bayesian 
method is used rather than the frequentist are presented 
in Fig. 7. The functions and libraries applied in R are the 
same as above, while the selected threshold is also the same. 
Again, the q-q plots indicate that data follow the model dis-
tribution in a good agreement, except for very high sizes of 
burned area where certain deviations are observed, similarly 
to POT frequentist. Furthermore, the comparison between 
modeled data and empirical distribution seems to be suf-
ficient for the values higher than the threshold. Finally, the 
estimation of return period is good for low return periods, 
while the predictions become uncertain for higher periods. 
The 95% confidence bands, as shown in Fig. 7, increase with 
the size of the burned area, becoming very large for high val-
ues, indicating a high uncertainty in the estimations. There-
fore, the intrinsic drawback of the method is also presented 
here, in accordance with what has been observed for the 
frequentist POT approach, although at much lower levels. 
Finally, the weakness of the empiricism that was previously 
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underlined is also observed here, as far as the selection of the 
appropriate threshold is again arbitrary. Compared with the 
frequentist POT approach, the Bayesian one shows matching 
between empirical and modeled data of the same accuracy as 
for the frequentist POT approach, while the predictions for 
the return period become of weak confidence for long time 
periods comparing with the size of the available data [37].

The estimated return periods, which predict the expected 
time until fire events of specific sizes re-occur, are detailed 
for the three methods in Table 1 and visually represented 
in Fig. 8. The analysis includes ten return periods (2, 5, 
10, 25, 50, 100, 200, 500, 1000, and 2000 years), with the 
corresponding burned areas for each method reported in 
Table 1. Up to the 25-year return period, the GEV is less 
accurate compared to both the frequentist and Bayesian 
POT methods, as it associates larger burned areas with each 
return period, while both POT methods are of equivalent 
efficiency. However, beyond the 50-year return period, this 
trend reverses, with the GEV method underestimating the 
burned area following an asymptotic-type behavior, while 
both frequentist and Bayesian POT approaches present pre-
dictions increasing with the return period. When comparing 

the two POT approaches, the Bayesian method diverges 
with a rate much higher than the frequentist one (as seen in 
Table 1 and Fig. 8).

4.2 � Specific Large Fires in Greece

Return periods have been estimated using the three methods for 
few real-world fire events that have occurred in Greece in recent 
years namely in Euboea (2021) and Dadia (2023) (see Fig. 9).

The North Euboea fire in 2021 marks a significant shift 
in defining the scale of exceptionally large fires in Greece, 
accounting for 45,000 ha of burned area. As stated by Gemi-
tzi and Koutsias [38], the fire in Euboea in the summer of 
2021 destroyed more than 400 km2 of forest in the northern 
part of the island. The areas affected by the fire were eco-
nomically active, serving as sites for honey and resin pro-
duction, as well as hosting cattle breeding and mild tourist 
activities. Consequently, the fire had profoundly negative 
effects on the local economy, in addition to the destruction 
of an environment of exceptional natural beauty. Regarding 
the reasons behind it, many sources indicate a combination 
of human negligence, fuel load, and persisting favorable 

Fig. 4   Output plots of the Fit 
GEV to block maxima
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meteorological conditions possibly related to climate change 
as the main driving factors [38]. The size of about 45,000 
ha corresponds to a return period of 200 years based on 
the POT frequentist, between 100 and 200 years based on 
the POT Bayesian, and much more than 2000 years based 
on the GEV. In this case, the GEV approach overestimates 
significantly and probably enormously wrongly the return 
period for this size of fire.

In the summer of 2023, we experienced one more signifi-
cant event concerning the fire activity in Greece, in Dadia, 
which unfortunately burned more than 95,000 ha—an unreal 
number according to the fire history of the last century in 
Greece. The Dadia case is considered an exceptional fire 
that burned almost consecutively for 16 days. Although the 
number of 95,000 ha has not been recorded before in the 
recent history of the country, its real magnitude remains 
uncertain. The second largest fire in terms of size is that of 
Euboea in 2021, which is almost half the size of Dadia’s fire. 
Therefore, translating the size of the fire into a return inter-
val helps to define its real magnitude, as the fire in this case 
is reported as an event expected once within a very large 

period of time. The size of about 95,000 ha corresponds to 
a return period of 2000 years based on the POT frequentist, 
between 500 and 1000 years based on the POT Bayesian and 
enormously wrongly higher than 2000 based on the GEV. 
In this case, the GEV approach enormously overestimates 
the return period for this size of fire while POT Bayesian 
underestimates it.

5 � Discussion

5.1 � Limitations Relating to Extreme Value Theory 
Implementation

Starting with the GEV method, the results seem to be 
not accurate enough, particularly for long return periods 
(> 100 years). This concern can be attributed to the limited 
size of the available data (only 25 years) as well as to the 
block maxima approach itself, because it introduces a degree 
of arbitrariness in the calculations, as far as the number of 
incidents that build a block is one of the parameters of the 

Fig. 5   Output plots of the POT 
approach (frequentist)
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Fig. 6   a Mean residual life plot for POT frequentist approach, and b effect of threshold on GP distribution parameters

Fig. 7   Output plots of the POT 
approach (Bayesian)
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model [39]. In our case, the definition of block size to 1 year 
is the only reasonable option, and it could strongly affect 
the accuracy of the procedure, because the total length of 
the data series (25 maxima used) is only an order of mag-
nitude larger than the length of the blocks. Indeed, the size 
of available data has already been recognized as crucial for 
the effectiveness and accuracy of the GEV approach, where 
it is found that the return period calculated by GEV is suc-
cessful only when it is of comparable magnitude with the 
size of the available data (see, for instance, [36]). The core of 
this weakness is identified in the fact that the parameters of 
the distribution are estimated through mathematical limits, 
which hold only when the amount of data tends to be infinite. 
However, in practice, the quantity of data that is available is 
finite, and this is a serious reason for biased results. Further-
more, the selected method to obtain explicit expressions for 
the GEV parameter estimates is important. Here, we made 
use of the maximum likelihood method, which is a widely 
acceptable and preferred estimation method, since it is quite 
general and more flexible than others. However, in ordinary 
extreme value analyses like the ones we are cited in this 
work, the flexibility provided by the maximum likelihood 
method is not necessary because we have a small sample size 
and, at the same time, no too heavy-tailed distributions [40].

To continue with the POT approach, it is well known that 
it is not as sensitive to the magnitude of the available data as 
GEV, but, unfortunately, it suffers from the arbitrariness that 
the selection of the threshold introduces to the procedure. 
This weakness has been pointed out several times in the past 
[26, 41]. As mentioned before, the selection of the threshold 
is an empirical practice that affects the results for high-
level return periods. In particular, the determination of the 
threshold involves the mean excess function as also defined 
by Kotz and Nadarajah [12] where graphical determination 
of the function’s linearity is used. With an appropriately 

selected threshold for a given dataset, POT seems to be a 
reliable alternative for the return period estimations, even 
for very rare extreme events [22, 37]. In this context, the 
method can be proposed as an appropriate option, especially 
when the available dataset is of limited size once specific 
assumptions are valid, such as those referring to stationarity, 
independence, and clustering. Analogous conclusions have 
been encountered several times in the relative literature when 
both methods were applied to hydrological [37], oceanic 
[22], and temperature [3] data. Finally, the use of the log 
function on the dataset supports a more accurate selection 
of the threshold, as the narrow range of the available values 
allows for less sensitive choices of threshold value [42]. It is 
also worth noticing that the raw data sampling rate is another 
parameter affecting the return period values predicted by 
the POT approach. This is more significant when data is 
recorded on a regular basis, a case where the period should 
be defined and considered for the mathematical estimations. 
In our case, the incidents are recorded whenever they 
happen; thus, the sampling rate is not constant. Specific 
issues can also arise due to multi-sampling, since more than 
one incident can occur during the same date. Although the 
return period is always estimated in years, the sampling rate 
time unit should be considered through the calculations.

Theoretically speaking, the Bayesian approach is expected 
to perform particularly well when working with short data sets. 
As the available thresholded data are quite limited here, the 
information incorporated as a prior distribution is more than 
valuable. On the other hand, an analysis using an uninformative 
prior closely mirrors results obtained via profile likelihood 
methods. However, this outcome contrasts sharply with analyses 
based on maximum likelihood and asymptotic standard errors, 
due to the pronounced skewness in profile likelihood surfaces 
for return levels, particularly when very few years of data are 
available. The key point is that Bayesian inference, when using 
flat priors, essentially recovers a likelihood-based analysis. In 
contrast, the empirical prior distribution we adopted is genuinely 
informative, leading to significantly different inferences.

To conclude with, the frequentist POT approach shows a 
better performance as compared to GEV and POT-Bayesian 
methods. This can be observed through the range of the 
confidence intervals, where the wider the intervals, the higher 
the uncertainties of the estimations. There are several works 
in literature with similar findings, using various datasets and 
conditions [43–45], among others, where this higher efficiency 
is attributed to lower uncertainties at the distribution tails [46].

5.2 � Limitations Using Fire Magnitudes as Extremal 
Predictors

As mentioned in the introduction, when a wildfire occurs 
and the event is communicated—especially to the general 

Table 1   Return periods and the corresponding area burned for the 
three EVT approaches

Return period Burned area (Ha)

GEV POT frequentist POT Bayesian

2 3462 3597 3642
5 9173 6871 7191
10 13,942 10,614 11,485
25 20,003 17,698 20,196
50 24,035 24,957 29,826
100 27,445 34,046 42,797
200 30,223 45,074 59,824
500 33,020 62,685 89,832
1000 34,585 78,244 119,197
2000 35,775 95,599 155,153
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public—the size of the fire becomes one of the most impor-
tant characteristics to report. This statistic provides people 
with an understanding of the fire’s size and thus people get 
an idea about the magnitude and significance of the fire. 
However, this assumes that people have an idea of what a 
particular fire means in terms of size and how it compares 
to their empirical knowledge derived from the fire his-
tory of the area. In essence, the interpretation of fire size 
varies depending on the local distribution of fire sizes to 
which the area is exposed. Therefore, a fire of a specific 
size can have a completely different significance depending 
on the area in which it occurs and the type of ecosystem 
affected. To address the limitations of relying solely on fire 

size to characterize a wildfire event, an alternative approach 
involves incorporating the concept of return period (also 
known as recurrence interval or repeat interval). This sta-
tistical measure, calculated by the Extreme Value Theory 
(EVT), represents the average time between extreme events 
[1]. It offers a more context-sensitive reflection of fire mag-
nitude, grounded in the local fire history [2].

When modeling large-scale phenomena—especially 
across extensive geographic areas such as at the global 
level—using fire size as the dependent variable can intro-
duce bias into the analysis. This is because fires of the 
same size may have vastly different meaning depending 
on their location and ecological context. Relying solely on 

Fig. 8   a Comparison of the 
three methods in terms of 
return-period prediction, and b 
graph of the return periods and 
the corresponding area burned 
for the three EVT approaches



	 N. Koutsias, F. A. Coutelieris 

fire size may lead to inconsistent interpretations and poten-
tially misleading conclusions. An alternative approach 
involves incorporating the return period as an additional 
or even primary response variable. As previously dis-
cussed, two fires of equal size can correspond to very dif-
ferent return periods, indicating differing levels of rarity 
and recurrence. Using a return period provides a more 
context-sensitive measure that reflects local fire history 
and variability. This shift in focus—from fire size alone to 
return period—not only refines the analytical approach but 
also reframes the research question. Instead of identifying 
global factors that influence fire size, the analysis shifts 
towards identifying local drivers of fire magnitude. This 
perspective offers a more nuanced understanding on fire 
behavior and risk at regional scales.

To illustrate this concept more concretely, consider 
a hypothetical research question aimed at explaining 
burned areas, with fire size as the dependent variable. 
In such a case, two fires of the same size—one in a fire-
prone region where large fires are common, and another 

in a non-fire-prone region where large fires are rare—
would be treated equivalently based solely on size. This 
approach, however, overlooks important contextual differ-
ences. If we instead use the return period as the dependent 
variable, these fires would be differentiated. The fire in 
the fire-prone area would have a shorter return period, 
indicating frequent occurrence, while the fire in the non-
fire-prone area would have a much longer return period, 
reflecting its rarity. This distinction offers a more mean-
ingful interpretation of fire dynamics and help assess fire 
risk more accurately across different regions.

Finally, for local authorities, understanding the expected 
frequency of events of a particular magnitude is essential 
for effective planning and resource allocation—including 
infrastructure, personnel, and emergency services. For 
example, it is critical for communities to assess the likeli-
hood of experiencing a fire of a specific size. Knowing 
whether a 5000- or 10,000-ha fire is expected once every 
10 years versus once every 50 years can significantly influ-
ence their preparedness efforts and plans. This information 

Fig. 9   Pre-fire Landsat images (left two images) and post-fire Landsat images (right two images) of the two exceptional large fires occurred in 
Euboea (2021) and Dadia (2023), Greece
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shapes fire prevention strategies, emergency response 
capacity, and long-term planning. The return period is 
also highly relevant for the insurance sector. Insurance 
companies use it to assess risk and determine premiums 
more accurately. By understanding how frequently large 
fires are likely to occur, both public and private sectors can 
better manage and mitigate fire-related risks.

6 � Conclusions

In this study, EVT has been applied to wildland fire data 
recorded for 25 years from 1983 to 2007 in Greece. Data 
include details about the size of the burned area as well as 
other parameters related to fires, such as the x and y coordi-
nates, dates, etc. The main objective of this study is to explore 
the performance of each method regarding the prediction of 
the return period for extremely rare events. For the sake of 
comparison and evaluation, three methods (GEV, frequentist 
POT and Bayesian POT) have been applied to the same raw 
data after the appropriate elaboration. As far as the return 
period is introduced here as the most appropriate indicator 
for the approximation of extremeness, all the methods were 
compared in terms of accuracy on the estimation of the return 
period for events of specific magnitude.

The results from the GEV approach tend to level off 
asymptotically at a constant value, suggesting that the size of 
the burned area remains approximately constant after a cer-
tain initial time, regardless of the period considered for the 
return level. This behavior is clearly unrealistic, highlight-
ing that GEV provides reliable forecasts only for time peri-
ods that are of comparable size with the available dataset. 
Although conceptually different, the Bayesian POT approach 
also exhibits unrealistic behavior over extended time peri-
ods, as the size of the burned area constantly increases with 
time, following a power-law curve. Lastly, the frequentist 
POT model appears to perform well with the available data, 
predicting a more realistic and accurate increase in burned 
area size over time, as has also been evaluated here.
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