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Abstract

This study presents a comparative study of Extreme Value Theory (EVT) concepts, applied to wildland fire data collected
in Greece over a 25-year period (1983 —2007). The dataset comprises 28,658 fire records from the Hellenic Forest Service,
including details such as coordinates and size of the burned area. The primary objective is to develop a method for quan-
tifying extreme values and estimating return periods and thus translating fire size into a more interpretable measure of fire
significance. The study applies and evaluates both the block maxima generalized extreme value (GEV) approach and the
peaks over threshold (POT) approach, using frequentist and Bayesian frameworks. The results from the GEV distribution
indicate an asymptotic leveling off at a constant value, suggesting that the burned area size remains unchanged over time.
This outcome is clearly unrealistic, implying that the GEV model provides reliable predictions only for time frames closely
aligned with the period during which the empirical data were collected. Although conceptually different, the Bayesian POT
approach also demonstrates unrealistic behavior over longer periods, with the burned area size continuously increasing along
a power-law curve. In contrast, the frequentist POT model performs well with the available data, providing a more realistic
and accurate representation of the increasing burned area size over time. According to the frequentist POT approach, the
largest forest fire ever recorded in Greece (Dadia Forest in 2023)—covering approximately 95,000 hectares—corresponds
to a return period of 2000 years. Over the past few years, many wildland fires in Greece have resulted in exceptionally large
size of burned areas.
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1 Introduction

When a wildfire occurs and the event is announced, espe-
cially to the general public, the size of the fire becomes one
of the most important characteristics communicated. This
statistical value provides people with an understanding of
the fire’s magnitude and significance. To achieve this, indi-
viduals already have an idea of what a particular fire size
means in terms of scale, based on their empirical knowledge
derived from the fire history of the area. In essence, the inter-
pretation of fire size varies based on the local distribution of
fire sizes to which the area is exposed. For example, a 5000
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Ha fire would have a different meaning if occurred in South-
ern Europe, Northern Europe, Africa, or North America and
also depending on whether it occurred in the Mediterranean,
Northern, or Savannah ecosystems. To overcome the limita-
tions associated with characterizing fire events solely based
on burned area, an alternative approach involves integrating
the concept of the return period (also referred to as recur-
rence or repeat interval), which accounts for the statistical
rarity and temporal frequency of such events. This statistical
measure, calculated using the Extreme Value Theory (EVT),
corresponds to the average time between extreme events [1].
If a fire size of 5000 Ha corresponds to a return period of
50 years, then it can be described as a “50-year event” rather
than a ““5,000-Ha event.” Depending on the local distribution
of fire sizes, the 5000-Ha fire would have a different return
period if occurred in Southern Europe, Northern Europe,
Africa, or North America, or in the Mediterranean, Nordic,
or Savannah ecosystems. This approach better reflects the
expected fire magnitude based on the local fire history [2].
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From a statistical perspective, Extreme Value Theory
(EVT) represents the most rigorous and specialized method-
ology for characterizing extreme deviations from the central
tendency of a probability distribution. Traditional statisti-
cal approaches are primarily concerned with the typical or
average behavior of data series, offering limited insight into
the tail behavior where rare events reside. In contrast, EVT
is expressly developed to model the stochastic behavior of
extreme observations, providing a mathematically robust
framework for quantifying the likelihood and recurrence
intervals of infrequent but potentially high-impact events
[3]. Its applicability extends across diverse scientific and
engineering disciplines, particularly in scenarios involving
events that substantially exceed historical observations in
magnitude or rarity [4]. Crucially, the accurate estimation of
return periods for such extremes is of paramount importance
[5], often superseding the relevance of their mere probability
of occurrence, as it informs long-term risk assessments and
strategic planning under uncertainty. Extreme Value Theory
(EVT) admits both frequentist and Bayesian formulations,
allowing for flexible inference under varying epistemologi-
cal frameworks. In the context of univariate modeling of
rare events—where the stochastic process is characterized
by extreme deviations—three principal methodologies are
prevalently employed: the GEV distribution for block max-
ima, the generalized Pareto distribution (GPD) for threshold
exceedances, and the Poisson point process (PP) framework,
which often incorporates GEV characteristics to model the
occurrence and magnitude of extremes in continuous time or
space [6]. Each of these approaches is grounded in asymp-
totic theory and is distinguished by its suitability for differ-
ent sampling schemes and inferential objectives. The math-
ematical foundations, model assumptions, and conditions
for applicability of these formulations will be rigorously
examined in the forthcoming sections. Considerable efforts
have been directed towards the application of extreme value
analysis to wildfire events. Beverly and Martell [2] utilized
EVT to characterize dry spell and fire size extremes in both
the east and west divisions of the Boreal Shield ecozone in
Ontario. They estimated the return time of a 30-day dry spell
event and a 10,000 Ha fire, highlighting substantial differ-
ences between the compared event locations [2]. In the con-
text of characterizing large fire behaviors, Jiang and Zhuang
[7] employed the GEV distribution, the GP distribution, and
the GEV distribution combined with a Poisson point process
representation. They applied these methods to fit Canadian
historical fire data spanning from 1959 to 2010. Their find-
ings indicated notable disparities between anthropogenic and
natural extreme fires in terms of extreme statistics. However,
fire return levels aligned well with observations in relation
to the magnitude and frequency of extreme events [7]. de
Zea Bermudez et al. [8] modeled the spatial and temporal
patterns of large fire events in Portugal from 1984 to 2004
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using the POT approach. Their analysis revealed distinct
regional variations in return periods [8]. Moreover, drawing
from 64,474 fire records collected between 1991 and 2007
in Mississippi, Sun and Tolver [1] employed extreme value
statistics, specifically the POT approach. Their study con-
cluded that wildfires in Mississippi followed a GP distribu-
tion [1]. Lastly, Evin et al. [9] employed a Bayesian approach
to EVT, utilizing it to evaluate fire policy in France. They
incorporated the return period of extreme events to assess
policy effectiveness in terms of spatial and temporal discre-
tization [9]. Finally, the POT method, combined with clas-
sification techniques, has been applied to cluster time series
data of daily area burned in 18 Portuguese districts from
1980 to 2010. Their results showed that the distributions of
area burned are heavy-tailed with considerable density in the
tail, which indicates a non-negligible probability of occur-
rence of days with very large area burned [10].

Given that wildfires with extensive burned areas are
important events in the context of the planet’s evolving
climate and landscapes, their accurate assessment of rar-
ity is of substantial scientific and societal importance. This
information could play an important role in policy making,
aiding in the prevention of such events and facilitating the
implementation of necessary actions, including training fire
crews, maintaining tactical aircraft and trucks, and educating
support forces [11]. This study aims to apply and explore
Extreme Value Theory approaches to wildland fire obser-
vations collected over a period of 25 years from 1983 to
2007 in Greece. The dataset includes 28,658 fire observa-
tions obtained from the Hellenic Forest Service and reports
several parameters, including the x and y coordinates, the
size of the burned area, and others. Our primary objective
is to develop a methodological approach for quantifying
extreme values and assessing the return period. To this end,
the size of a fire is translated into a return period, providing
people with a better understanding of the fire’s magnitude
and significance. We apply and evaluate the block maxima
GEYV approach and the POT approach, both frequentist and
Bayesian.

2 Theoretical Background
2.1 Extreme Value Theory

Extreme Value Theory (EVT) constitutes a specialized
domain within probability theory and statistical inference
that systematically characterizes the stochastic behavior of
observations located in the distributional tails. Rather than
addressing the central tendency or variance of a dataset,
EVT is explicitly formulated to model rare, high-impact
events that manifest as extreme deviations from the expected
value of an underlying distribution. The framework enables
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rigorous quantification of the likelihood and severity of such
outliers, which may represent maxima or minima within a
finite sample. In operational terms, EVT facilitates the esti-
mation of tail probabilities associated with observations that
surpass all previously recorded values in a univariate time
series [12]. More precisely, it allows for the derivation of the
asymptotic distribution of exceedances or block maxima,
thereby enabling probabilistic assessments of future extreme
events in relation to historically observed data [13]. In gen-
eral, we focus on the behavior of a random variable.

M, = max{X, X, ....X,}, (1

where X, X,, ..., X,, is an ordered sequence of values from
an independent random variable X and » is the number of the
different values, assumed to follow a distribution function.

Obviously, the above Eq. (1) can be easily used for the
case of minimum rather than maximum. By denoting the
distribution function of M, values as F, it is rather straight-
forward that the probability P for M,, to be lower than a value
Z 18 given as

P(M, <z) =[FQ)!" @

As far as F is generally an unknown function, the approxi-
mate families of P should be identified, based only on the
extreme data, and by considering that n— co. From a fre-
quentist point of view, two widely used methods study this
statistical behavior. The first method has been developed in
the context of deriving singularities (maxima or minima)
by applying the GEV distribution [14]. The second method
identifies values that exceed or fall below a certain threshold,
referred as POT method [15]. Both approaches are valid if
and only if the random variable is independently and iden-
tically distributed [16]. The assumption of independence
might be violated when extreme values are grouped in clus-
ters, while the assumption of identically distributed observa-
tions can be relaxed when non-stationary processes such as
trends render the assumption invalid [17]. Both methods are
presented in detail in the next section.

An alternative to the frequentist approach is the Bayes-
ian method, where prior distributions are chosen for the
parameters of the GP distribution (GPD), and posterior dis-
tributions are calculated, providing a measure of expected
uncertainty [18].

2.2 Extreme Value Theory Approaches

2.2.1 GEV Approach

The conventional EVT considers maxima (or minima) over
specific blocks of time, known as block maxima/minima. By

incorporating the Extermal Types Theorem, also referred
to as the Fisher-Tippett-Gnedenko Theorem [19], along

with the aforementioned concept for defining the distribu-
tion function, the maxima in Eq. (1) follow the generalized
extreme value distribution, given as

G(z)=exp{—[1+§<%)]_é} 3)

where u is the location parameter, o is the scale parameter,
and ¢ is the shape parameter. In accordance with the above-
mentioned theorem, the value of £ outlines the family of
non-degenerate distributions that G(z) belongs to. Precisely,
if & = 0 then G(z) follows the Gumbel distribution, if £ > 0
then G(z) follows the Fréchet distribution and, if £ < O then
G(z) follows the Weibull distribution [13].

To apply the GEV distribution to a dataset, obtaining var-
ious conventional yet necessary statistical quantities is also
required. Specifically, one must estimate the log-likelihood,
along with the variance—covariance matrix, to calculate the
standard errors for the parameters y, o, and &, as well as
the 95% confidence intervals for them. Additionally, it is
important to identify the profile log-likelihood for & and,
finally, to approximate confidence intervals for pre-defined
return levels [20]. The GEV distribution is typically fitted to
block maxima (or minima), and it is worth noticing that the
main drawback of the block maxima approach is that it does
not utilize all the available information, especially about
the upper tail of the distribution, since only each maximum
value is able to be used. As a result, it inaccurately repre-
sents the needed statistical information [21].

2.2.2 POT Frequentist Approach

This approach focuses on the number of extreme events that
have values higher than a certain threshold. More specifi-
cally, considering the random variable defined in Eq. (1) and
assuming that M, satisfies the GEV distribution (Eq. (3)),
then the distribution function of the transformed variable
X — u for sufficiently large u must adhere to the constraint

PX,—u>y|X;>u 4

where y follows the GP distribution of the form:

1

H(y)=1—<1+§:y> 5 ®)
o

where

c =0+ &u—p) (6)

Note that the parameters u, o, and £ have been defined
previously (refer to Eq. (3) and the related discussion
there). It is interesting to provide a simple description of
how ¢& influences the distribution: if £ <0, then the distri-
bution is bounded; if £=0, the distribution is light-tailed
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(exponential); and if £> 0, the distribution is heavy-tailed
(Pareto).

To perform a POT estimation of the GEV distribution
(Eq. (3)), it is essential to determine a reasonable threshold
u [22]. To avoid empirical estimation based on the raw data
and the physical problem under consideration, a maximum
likelihood estimation should be conducted by fitting a GPD
to the data series. This implies that, above a specific thresh-
old at which the GPD assures a valid approximation, the
mean residuals should be roughly linear with u (Eq. (4)).
Consequently, a plot of mean residuals can be quite use-
ful for defining the appropriate threshold. Following this,
a 95% confidence interval must be recalculated based on
the maximum likelihood data. Finally, the return levels
can be derived using the same methodology as in the GEV
approach [23].

The accuracy of the POT approach strongly depends on
the threshold value, whose identification is usually under
question due to the empiricism involved here [24]. To over-
come this, a balance between bias and variance [25] should
be assured, either by applying the mean residual life plot and
identifying the point at which this plot becomes linear [26],
or by comparing the fitting of the GP distribution across a
range of different thresholds while adjusting the correspond-
ing parameters [1].

2.2.3 POT Bayesian Approach

As far as frequentist statistical methods present some draw-
backs for the treatment of extreme values, some Bayesian
approaches are also available [9]. A typical application of
Bayesian approach initialized by putting all the parameters
affecting the problem to a vector 6. Then, each element of
the vector is treated as random variable that is assumed to
follow a specified probability density distribution (named
“prior distribution”). This prior distribution is the distribu-
tion that the vector elements follow, before related to any
data. Then, the likelihood of f(0) is expressed as f(x|€) and,
by applying Bayes’ Theorem, is

f(Of(x|0)
0 = SV
UG zef(Q)f(xW) )

to the extent that x is a discrete random variable. This f(8]x)
is the posterior distribution of 6.

Precisely, the direct computation of the denominator
in Eq. (7) can be tricky. As a result, Markov-chain Monte
Carlo (MCMC) techniques are frequently employed to inves-
tigate the quality of fitting that the simulated values present
regarding the posterior distribution. A common practice to
produce an evaluated fitting is the utilization of the Metropo-
lis—Hastings algorithm within the MCMC procedure. This
algorithm generates and accepts new samples for f(8|x)in a
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randomized manner [27]. Ultimately, the Bayesian approach
also facilitates the estimation of return levels, based on the
maximum likelihood analysis, as below discussed.

2.2.4 Return Levels

The return period represents the expected average interval
between occurrences of extreme events. It is mathematically
derived as the inverse of the exceedance probability, which is
itself estimated within a defined confidence interval. In the
framework of EVT, specific emphasis is placed on deriv-
ing return levels, which correspond to quantiles associated
with a given return period [18]. For calculating return levels
over a specific period of years, we employ the approach pre-
sented by Sun and Tolver [1]. When considering an event as
extreme (regardless of the method used for characterization),
let us denote the desired return period as N years and the
corresponding return level as x". This implies that the prob-
ability of x" being exceeded in any given year is P=I/N.

The specific return level x" is anticipated to be surpassed
on average once every N years. In this context and for a given
extreme values distribution, characterized by parameters o
and &, the N-year return level associated with m observations
(xz ) can be expressed as:

xAm]=u+%[NnyP(Xi> w)f -1 @®)

where 7, is the number of observations per year. Note here
that the above theoretical approach stands for both GEV
and POT frequentist methods, where u, o, and ¢ are the
parameters of either GEV or GP distributions. For the case
of Bayesian approach, a prior distribution can be described
by parameters u, o, and £, where Monte-Carlo algorithms
usually are applied to obtain the corresponding posterior
distribution, and therefore, the return level in analogy to
Eq. 8 [28]. To summarize the return period concept, it serves
as a metric for the extremeness of an event: the greater the
return period, the rarer the event.

3 Materials and Methods
3.1 Study Area and Data
3.1.1 Study Area

Greece is situated at the end of the Balkan Peninsula and
stretches between latitudes 34° and 43° north, and longitudes
19° and 28° east (Fig. 1). The country covers an approxi-
mate area of 132,000 km?, with a total population of nearly
10.5 million people, based on the 2021 census data provided
by the Hellenic Statistical Authority. The Greek climate is
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(a) the study area, Greece

(b) the wildland fire ignition points

(c) histogram data plot of the area burned
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Fig. 1 a the study area, Greece, b the wildland fire ignition points, ¢ histogram data plot of the area burned, and d annual total burned area

mainly Mediterranean, with a large range of variations due
to complex terrain. The dominant vegetation types affected
by fires, according to official fire records between 1985
and 2004 (Hellenic Forest Service), are phryganic ecosys-
tems (32.34% of the total burned area), Pinus halepensis
(15.43%) and Pinus brutia (6.17%) forests, Quercus coccif-
era shrublands (12.22%), and grasslands (7.36%). Addition-
ally, 10.34% of the total burned area was recorded in forests
under regeneration, where no information on the dominant
affected vegetation types was provided [29].

3.1.2 Wildland Fire Observations
The fire database used in this study consists of fire events

occurred in Greece during the period 1983-2007. The
25-year database contains in total 28,658 fire events with

many parameters that have been recorded during each fire
event and attached like for example the area burned, the date,
and others. Additionally, the x and y coordinates recorded in
latitude and longitude using degrees and first minutes have
been registered and helped to position the fire events into a
map (Fig. 1). This positional information helped us to regis-
ter the fire events geographically. Histogram data plots and
aggregated statistics to create the total annual burned area of
the considered time period are shown in Fig. 1.

To apply the EVA methods, data pre-processing is nec-
essary. Starting with the GEV approach, the block maxima
has been identified and recorded (Fig. 2). The block maxima
approach in Extreme Value Theory (EVT) consists of divid-
ing the observation period into non-overlapping periods of
equal size and restricts attention to the maximum observa-
tion in each period [30]. The block maxima in our study
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Fig.2 Data preparation to run
the Extreme Value Theory

Data for 'Fit GEV to Block Maxima'

250000
1

approaches (i) “Fit GEV to
Block Maxima” (upper figure)
and (ii) “Peaks Over Threshold
Approach” using the frequen-
tist and the Bayesian approach
(lower figure)
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were considered on a yearly basis due to the seasonality of
the fire events within the year. There are several months dur-
ing one single year when no incidents occur, as for example
mainly during the winter. On the other hand, block sizes
higher than 1 year correspond to available data less than 25,
which is a very limited amount to obtain accurate statisti-
cal estimations. As mentioned before, the POT method is
based on the use of a threshold to isolate values considered
extreme from the rest of the data and create a model for
the extreme values by considering the tail of all the val-
ues that exceed this threshold. In general, data exceeding
the threshold approximate to a general Pareto distribution
[31]. The thresholded data used in this study are presented
in Fig. 2. Regarding the Bayesian approach, it involves the
derivation of posterior distributions. This requires defining
prior distributions and utilizing Markov Chain Monte Carlo
(MCMC) methods for sampling. Finally, the comparison of
the prior with the posterior distribution is achieved empiri-
cally through the relative Q-Q plots.

It is also worth noticing that the results should be checked
against the geographical (location) dependence, as far as
the non-stationarity assumption is crucial for both GEV and
GP distributions that are employed in the analysis presented
here. More precisely, the block maxima method on the col-
lated fire size data will choose the yearly maximum from the
location with the largest fire size only, so the resulting GEV
distribution is only appropriate for a single location where
the maximum-maximums occur. Similarly, for the GPD, a
high threshold choice will ignore locations with lower fire
size, even if the lower fire size is extreme for those areas.
Figure 3 shows the spatial distribution of the size of the
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burned area for each fire ignition point and the longitudinal
and latitudinal trends of the maximum values of the size
of the fires. It seems that there is not any significant trend,
therefore, the stationarity in our data seems that it is not a
real problem. The above assures that the resulting distribu-
tions estimate return periods and return levels that are not
locationally dependent.

Finally, for the POT approach, the assumption of abso-
lutely no clustering of the above-threshold data values has
been also checked through an estimated Extremal Index as
Sun and Tolver (2012). Precisely, we estimated the Exter-
nal Index both annually and for the whole data set, finding
values high enough to ensure independence. These values
vary between 0.46 the lowest and 1.0 the highest, while the
overall average value for the whole data in our work set is
around 0.39.

3.2 Methodology
3.2.1 Applying the Extreme Value Theory

From a technical standpoint, the statistical analyses and
graphical representations were conducted using the R pro-
gramming language [32], which is universally acknowledged
as one of the optimal environments for statistical computa-
tion and visualization due to its vast repository of well-estab-
lished and rigorously assessed subroutines that are freely
distributed. The preparation of raw data for extreme value
analysis in R is a nuanced process that demands careful con-
sideration of data quality, distributional assumptions, and
the specific requirements of the chosen statistical methods.
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Fig.3 The spatial distribution of the size of the burned area for each fire ignition point and the longitudinal and latitudinal trends of the maxi-

mum values of the size of the fires

Therefore, it involves a systematic and meticulous process
to ensure the reliability and accuracy of the subsequent sta-
tistical models, particularly those related to GEV, POT, and
Bayesian approaches [33]. The initial step includes data
cleaning, addressing any missing or erroneous values, and
ensuring a consistent time series or distribution for analysis.
Once cleaned, data is often transformed (i.e., by log func-
tion), if needed, to satisfy distributional assumptions or sta-
bilize variance.

Conceptually, our emphasis lies in interpreting the prob-
ability to observe specific magnitudes of burned areas into

a quantifiable measure of the rarity of such occurrences. We
achieve this by utilizing the concept of the return period,
derived from extreme value analysis, as above discussed.
Essentially, the return period estimates the time expected
for the re-appearance of a specific event, recorded through
the value of the burned area.

To validate the accuracy of our model against real data,
we initiate the process with a comprehensive four-plot visu-
alization. The initial component involves the presentation of
two quantile—quantile (Q-Q) plots, which serve as effective
tools for assessing the congruence between two distinct data
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sets. In essence, a quantile represents the proportion of data
points within a dataset that are below a specified threshold.
When comparing two sets of data originating from the same
distribution, the points on the Q-Q plot should closely follow
a diagonal line at a 45° angle. Deviations from this reference
line indicate potential disparities between the distributions
of the two datasets. Notably, substantial deviations from this
line of equality may suggest that the two datasets have been
generated from dissimilar distributions. The third plot visu-
ally illustrates the level of alignment between the data model
and the empirical distribution function (i.e., how closely the
data model or satisfies the empirical distribution function).
From a qualitative point of view, a higher degree of prox-
imity between the two depicted curves signifies enhanced
accuracy of the model. It is important to acknowledge that
the bandwidth showcased on the same plot serves as an indi-
cator of the desired level of conformity between the den-
sity and the distribution. Finally, the fourth plot depicts the
return level plot, a graphical representation of the level that
is expected to be exceeded by the process on average once in
T-years against (the logarithm of) return period 7. Maximum
likelihood estimation is shown by the solid black line on the
plots while the gray dashed lines are approximate pointwise
95% confidence intervals. If there are n points in each data
set, the largest point will correspond to the empirical n-year
quantile, the second largest to the empirical (n— 1)-year
empirical quantile, and so forth [34].

3.2.2 Applying the Extreme Value Theory to Real-World
Cases

In this study, we apply the Extreme Value Theory (EVT) as
a method to analyze and quantify the magnitude of unprec-
edented wildfire events occurred in Greece, one in Euboea
(2021) and one in Dadia (2023). As already underlined, the
study and especially the prediction of when a catastrophic
fire incident is expected, is of great scientific and societal
importance, especially regarding the extreme values they
might present.

4 Results
4.1 The Extreme Value Theory Models

The results of the GEV approach that has been applied using
the function fevd() from the extRemes package [35] are
graphically presented in Fig. 4. The g-q plots indicate that
data following GEV distribution is in an acceptable agree-
ment with deviations observed at low and high values of
burned area size along the regression line. Furthermore, the
comparison between modeled data and empirical distribu-
tion shows specific insufficiencies, especially for not being
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able to capture the second peak. Finally, the estimations of
return period presents similar divergences for both low and
high return period values. This is expected due to the limited
amount of the length of the available time series data; in the
GEY, each time interval within the time series is represented
by one single value (the maximum).

The results for the POT are graphically presented in
Fig. 5. In this case, the g-q plots indicate that data follow
the model distribution in a very good agreement except for
very high sizes of burned area where certain deviations are
observed. Furthermore, the comparison between modeled
data and empirical distribution seems to be good for values
higher than the threshold. Finally, the accuracy of the return
period is good, even for high return periods (> 50 years)
since all the values, higher than the threshold, are involved
in the calculations. The above results suffer from the empiri-
cism that is used to select the appropriate threshold, a pro-
cess that introduces a level of arbitrariness in the method
itself. To overcome this weakness and to obtain an appro-
priate threshold value, based on a robust scientific approach
rather than empirical estimations, some work is necessary,
as described below [36]. Figure 6 shows the excess of the
dataset’s mean value over the selected threshold in terms of
likelihood confidence interval. In our case, it is depicted that
values of the threshold higher than 8 indicate a wider inter-
val of confidence, thus producing less reliable results. The
latter becomes clear through the representation of the effect
of the threshold’s choice over the parameters of distribution,
i.e., over both the shape and obviously the modified shape,
a parameter introduced to describe the GP distribution that
the excess should follow [24]. Again, the variation of param-
eters, corresponding to the uncertainty of the distribution
and therefore the difficulty in matching the available data,
becomes significant for threshold values > 8.

The results of the POT approach when the Bayesian
method is used rather than the frequentist are presented
in Fig. 7. The functions and libraries applied in R are the
same as above, while the selected threshold is also the same.
Again, the g-q plots indicate that data follow the model dis-
tribution in a good agreement, except for very high sizes of
burned area where certain deviations are observed, similarly
to POT frequentist. Furthermore, the comparison between
modeled data and empirical distribution seems to be suf-
ficient for the values higher than the threshold. Finally, the
estimation of return period is good for low return periods,
while the predictions become uncertain for higher periods.
The 95% confidence bands, as shown in Fig. 7, increase with
the size of the burned area, becoming very large for high val-
ues, indicating a high uncertainty in the estimations. There-
fore, the intrinsic drawback of the method is also presented
here, in accordance with what has been observed for the
frequentist POT approach, although at much lower levels.
Finally, the weakness of the empiricism that was previously
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Fig.4 Output plots of the Fit
GEV to block maxima

Fit GEV to Block Maxima - Fires 1983-2007

5 8
L
° o 1-1 line {
3 YA regression line .
w © 95% confidence bands® *
[0 =]
= g
- .
€] 3 *
het g &
8 > o "o'
= € — 7 ]
Q. .
£ 2 P
3 'R
= (2
c
©
3 ¢
) T T T | T
8 9 10 11 12
Empirical Quantiles
o
o
d [s2]
o o) s ©
N >
b 5 [0}
2 o 3 o
S - £
8 2 [
e | ¢ L
o -~ 7
[©
o o
S - 2
© T T T T T T 1 1 1 T
8 10 12 14 2 5 10 50 200 1000

N =25 Bandwidth = 0.5087

underlined is also observed here, as far as the selection of the
appropriate threshold is again arbitrary. Compared with the
frequentist POT approach, the Bayesian one shows matching
between empirical and modeled data of the same accuracy as
for the frequentist POT approach, while the predictions for
the return period become of weak confidence for long time
periods comparing with the size of the available data [37].
The estimated return periods, which predict the expected
time until fire events of specific sizes re-occur, are detailed
for the three methods in Table 1 and visually represented
in Fig. 8. The analysis includes ten return periods (2, 5,
10, 25, 50, 100, 200, 500, 1000, and 2000 years), with the
corresponding burned areas for each method reported in
Table 1. Up to the 25-year return period, the GEV is less
accurate compared to both the frequentist and Bayesian
POT methods, as it associates larger burned areas with each
return period, while both POT methods are of equivalent
efficiency. However, beyond the 50-year return period, this
trend reverses, with the GEV method underestimating the
burned area following an asymptotic-type behavior, while
both frequentist and Bayesian POT approaches present pre-
dictions increasing with the return period. When comparing

Return Period (years)

the two POT approaches, the Bayesian method diverges
with a rate much higher than the frequentist one (as seen in
Table 1 and Fig. 8).

4.2 Specific Large Fires in Greece

Return periods have been estimated using the three methods for
few real-world fire events that have occurred in Greece in recent
years namely in Euboea (2021) and Dadia (2023) (see Fig. 9).

The North Euboea fire in 2021 marks a significant shift
in defining the scale of exceptionally large fires in Greece,
accounting for 45,000 ha of burned area. As stated by Gemi-
tzi and Koutsias [38], the fire in Euboea in the summer of
2021 destroyed more than 400 km? of forest in the northern
part of the island. The areas affected by the fire were eco-
nomically active, serving as sites for honey and resin pro-
duction, as well as hosting cattle breeding and mild tourist
activities. Consequently, the fire had profoundly negative
effects on the local economy, in addition to the destruction
of an environment of exceptional natural beauty. Regarding
the reasons behind it, many sources indicate a combination
of human negligence, fuel load, and persisting favorable
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Fig.5 Output plots of the POT
approach (frequentist)
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meteorological conditions possibly related to climate change
as the main driving factors [38]. The size of about 45,000
ha corresponds to a return period of 200 years based on
the POT frequentist, between 100 and 200 years based on
the POT Bayesian, and much more than 2000 years based
on the GEV. In this case, the GEV approach overestimates
significantly and probably enormously wrongly the return
period for this size of fire.

In the summer of 2023, we experienced one more signifi-
cant event concerning the fire activity in Greece, in Dadia,
which unfortunately burned more than 95,000 ha—an unreal
number according to the fire history of the last century in
Greece. The Dadia case is considered an exceptional fire
that burned almost consecutively for 16 days. Although the
number of 95,000 ha has not been recorded before in the
recent history of the country, its real magnitude remains
uncertain. The second largest fire in terms of size is that of
Euboea in 2021, which is almost half the size of Dadia’s fire.
Therefore, translating the size of the fire into a return inter-
val helps to define its real magnitude, as the fire in this case
is reported as an event expected once within a very large

@ Springer

Return Period (years)

period of time. The size of about 95,000 ha corresponds to
a return period of 2000 years based on the POT frequentist,
between 500 and 1000 years based on the POT Bayesian and
enormously wrongly higher than 2000 based on the GEV.
In this case, the GEV approach enormously overestimates
the return period for this size of fire while POT Bayesian
underestimates it.

5 Discussion

5.1 Limitations Relating to Extreme Value Theory
Implementation

Starting with the GEV method, the results seem to be
not accurate enough, particularly for long return periods
(> 100 years). This concern can be attributed to the limited
size of the available data (only 25 years) as well as to the
block maxima approach itself, because it introduces a degree
of arbitrariness in the calculations, as far as the number of
incidents that build a block is one of the parameters of the
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Fig.7 Output plots of the POT
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Table 1 Return periods and the corresponding area burned for the
three EVT approaches

Return period Burned area (Ha)

GEV POT frequentist POT Bayesian
3462 3597 3642
5 9173 6871 7191
10 13,942 10,614 11,485
25 20,003 17,698 20,196
50 24,035 24,957 29,826
100 27,445 34,046 42,797
200 30,223 45,074 59,824
500 33,020 62,685 89,832
1000 34,585 78,244 119,197
2000 35,775 95,599 155,153

model [39]. In our case, the definition of block size to 1 year
is the only reasonable option, and it could strongly affect
the accuracy of the procedure, because the total length of
the data series (25 maxima used) is only an order of mag-
nitude larger than the length of the blocks. Indeed, the size
of available data has already been recognized as crucial for
the effectiveness and accuracy of the GEV approach, where
it is found that the return period calculated by GEV is suc-
cessful only when it is of comparable magnitude with the
size of the available data (see, for instance, [36]). The core of
this weakness is identified in the fact that the parameters of
the distribution are estimated through mathematical limits,
which hold only when the amount of data tends to be infinite.
However, in practice, the quantity of data that is available is
finite, and this is a serious reason for biased results. Further-
more, the selected method to obtain explicit expressions for
the GEV parameter estimates is important. Here, we made
use of the maximum likelihood method, which is a widely
acceptable and preferred estimation method, since it is quite
general and more flexible than others. However, in ordinary
extreme value analyses like the ones we are cited in this
work, the flexibility provided by the maximum likelihood
method is not necessary because we have a small sample size
and, at the same time, no too heavy-tailed distributions [40].

To continue with the POT approach, it is well known that
it is not as sensitive to the magnitude of the available data as
GEYV, but, unfortunately, it suffers from the arbitrariness that
the selection of the threshold introduces to the procedure.
This weakness has been pointed out several times in the past
[26, 41]. As mentioned before, the selection of the threshold
is an empirical practice that affects the results for high-
level return periods. In particular, the determination of the
threshold involves the mean excess function as also defined
by Kotz and Nadarajah [12] where graphical determination
of the function’s linearity is used. With an appropriately
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selected threshold for a given dataset, POT seems to be a
reliable alternative for the return period estimations, even
for very rare extreme events [22, 37]. In this context, the
method can be proposed as an appropriate option, especially
when the available dataset is of limited size once specific
assumptions are valid, such as those referring to stationarity,
independence, and clustering. Analogous conclusions have
been encountered several times in the relative literature when
both methods were applied to hydrological [37], oceanic
[22], and temperature [3] data. Finally, the use of the log
function on the dataset supports a more accurate selection
of the threshold, as the narrow range of the available values
allows for less sensitive choices of threshold value [42]. It is
also worth noticing that the raw data sampling rate is another
parameter affecting the return period values predicted by
the POT approach. This is more significant when data is
recorded on a regular basis, a case where the period should
be defined and considered for the mathematical estimations.
In our case, the incidents are recorded whenever they
happen; thus, the sampling rate is not constant. Specific
issues can also arise due to multi-sampling, since more than
one incident can occur during the same date. Although the
return period is always estimated in years, the sampling rate
time unit should be considered through the calculations.

Theoretically speaking, the Bayesian approach is expected
to perform particularly well when working with short data sets.
As the available thresholded data are quite limited here, the
information incorporated as a prior distribution is more than
valuable. On the other hand, an analysis using an uninformative
prior closely mirrors results obtained via profile likelihood
methods. However, this outcome contrasts sharply with analyses
based on maximum likelihood and asymptotic standard errors,
due to the pronounced skewness in profile likelihood surfaces
for return levels, particularly when very few years of data are
available. The key point is that Bayesian inference, when using
flat priors, essentially recovers a likelihood-based analysis. In
contrast, the empirical prior distribution we adopted is genuinely
informative, leading to significantly different inferences.

To conclude with, the frequentist POT approach shows a
better performance as compared to GEV and POT-Bayesian
methods. This can be observed through the range of the
confidence intervals, where the wider the intervals, the higher
the uncertainties of the estimations. There are several works
in literature with similar findings, using various datasets and
conditions [43-45], among others, where this higher efficiency
is attributed to lower uncertainties at the distribution tails [46].

5.2 Limitations Using Fire Magnitudes as Extremal
Predictors

As mentioned in the introduction, when a wildfire occurs
and the event is communicated—especially to the general
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public—the size of the fire becomes one of the most impor-
tant characteristics to report. This statistic provides people
with an understanding of the fire’s size and thus people get
an idea about the magnitude and significance of the fire.
However, this assumes that people have an idea of what a
particular fire means in terms of size and how it compares
to their empirical knowledge derived from the fire his-
tory of the area. In essence, the interpretation of fire size
varies depending on the local distribution of fire sizes to
which the area is exposed. Therefore, a fire of a specific
size can have a completely different significance depending
on the area in which it occurs and the type of ecosystem
affected. To address the limitations of relying solely on fire

size to characterize a wildfire event, an alternative approach
involves incorporating the concept of return period (also
known as recurrence interval or repeat interval). This sta-
tistical measure, calculated by the Extreme Value Theory
(EVT), represents the average time between extreme events
[1]. It offers a more context-sensitive reflection of fire mag-
nitude, grounded in the local fire history [2].

When modeling large-scale phenomena—especially
across extensive geographic areas such as at the global
level—using fire size as the dependent variable can intro-
duce bias into the analysis. This is because fires of the
same size may have vastly different meaning depending
on their location and ecological context. Relying solely on
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Fig.9 Pre-fire Landsat images (left two images) and post-fire Landsat images (right two images) of the two exceptional large fires occurred in

Euboea (2021) and Dadia (2023), Greece

fire size may lead to inconsistent interpretations and poten-
tially misleading conclusions. An alternative approach
involves incorporating the return period as an additional
or even primary response variable. As previously dis-
cussed, two fires of equal size can correspond to very dif-
ferent return periods, indicating differing levels of rarity
and recurrence. Using a return period provides a more
context-sensitive measure that reflects local fire history
and variability. This shift in focus—from fire size alone to
return period—not only refines the analytical approach but
also reframes the research question. Instead of identifying
global factors that influence fire size, the analysis shifts
towards identifying local drivers of fire magnitude. This
perspective offers a more nuanced understanding on fire
behavior and risk at regional scales.

To illustrate this concept more concretely, consider
a hypothetical research question aimed at explaining
burned areas, with fire size as the dependent variable.
In such a case, two fires of the same size—one in a fire-
prone region where large fires are common, and another

@ Springer

in a non-fire-prone region where large fires are rare—
would be treated equivalently based solely on size. This
approach, however, overlooks important contextual differ-
ences. If we instead use the return period as the dependent
variable, these fires would be differentiated. The fire in
the fire-prone area would have a shorter return period,
indicating frequent occurrence, while the fire in the non-
fire-prone area would have a much longer return period,
reflecting its rarity. This distinction offers a more mean-
ingful interpretation of fire dynamics and help assess fire
risk more accurately across different regions.

Finally, for local authorities, understanding the expected
frequency of events of a particular magnitude is essential
for effective planning and resource allocation—including
infrastructure, personnel, and emergency services. For
example, it is critical for communities to assess the likeli-
hood of experiencing a fire of a specific size. Knowing
whether a 5000- or 10,000-ha fire is expected once every
10 years versus once every 50 years can significantly influ-
ence their preparedness efforts and plans. This information
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shapes fire prevention strategies, emergency response
capacity, and long-term planning. The return period is
also highly relevant for the insurance sector. Insurance
companies use it to assess risk and determine premiums
more accurately. By understanding how frequently large
fires are likely to occur, both public and private sectors can
better manage and mitigate fire-related risks.

6 Conclusions

In this study, EVT has been applied to wildland fire data
recorded for 25 years from 1983 to 2007 in Greece. Data
include details about the size of the burned area as well as
other parameters related to fires, such as the x and y coordi-
nates, dates, etc. The main objective of this study is to explore
the performance of each method regarding the prediction of
the return period for extremely rare events. For the sake of
comparison and evaluation, three methods (GEV, frequentist
POT and Bayesian POT) have been applied to the same raw
data after the appropriate elaboration. As far as the return
period is introduced here as the most appropriate indicator
for the approximation of extremeness, all the methods were
compared in terms of accuracy on the estimation of the return
period for events of specific magnitude.

The results from the GEV approach tend to level off
asymptotically at a constant value, suggesting that the size of
the burned area remains approximately constant after a cer-
tain initial time, regardless of the period considered for the
return level. This behavior is clearly unrealistic, highlight-
ing that GEV provides reliable forecasts only for time peri-
ods that are of comparable size with the available dataset.
Although conceptually different, the Bayesian POT approach
also exhibits unrealistic behavior over extended time peri-
ods, as the size of the burned area constantly increases with
time, following a power-law curve. Lastly, the frequentist
POT model appears to perform well with the available data,
predicting a more realistic and accurate increase in burned
area size over time, as has also been evaluated here.
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