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The scope of this work is to model the mass transport process from a moving Newtonian fluid to an
assemblage of spherical solid absorbers. The flow field for laminar flow was obtained by numerically
solving the Navier–Stokes equation in the pore space of a stochastically constructed three-dimensional
assemblage of spherical particles, where the convective/diffusive transport is simulated by involving an
adsorption/reaction/desorption mechanism as an appropriate boundary condition. The spatial/volume-
averaging technique was used here for up-scaling, where the simplified boundary-value problems have
been described and numerically solved for the velocity field and concentration. Macroscopic mass transfer
coefficient was then calculated and compared with other approaches. The process was found to be
controlled by the Peclet number as well as the porosity of the porous structure. Through model validation,
the sorption mechanism considered here proved to provide a reasonable estimation of the mass transfer.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

There are many industrial and technological applications regard-
ing mass transport within porous media in a variety of scientific
fields, such as environment, energy and biology [1–3]. Mathemati-
cal modeling of transport processes in porous media is a powerful
tool, especially when experimental observations are difficult, time
consuming, or expensive. The complexity of the mathematical
description of mass transport in realistic porous structures is
significantly high, due to the coupling between the physicochemical
mechanisms and the local geometry of the porous medium. Model-
ing becomes more difficult when moving from the pore level to the
field level, because different length scales result in complicated
descriptions of the problem’s physics and therefore increased
computational power is usually required.

From the late 1950s, special effort has been given to mathe-
matically describe and solve flow and mass transport problems
in porous media, initially for quite simplified geometries where
analytical solutions can be obtained for the flow field and mass
diffusion and/or adsorption process [4–9]. On the other hand,
numerical solutions in realistic reconstructions of porous media
for the Stokes equations and the relative transport problems have
been obtained for several specific applications during the last
decades [10–14]. For the majority of the above research, the
ll rights reserved.
particles were assumed to adsorb mass instantaneously, which is
obviously a rare physicochemical phenomenon. Only recently,
some more detailed models for the sorption mechanism have been
presented [15,16].

An extended version of the above-mentioned approach is
adopted here to simulate the adsorption–heterogeneous reaction–
desorption mechanism, which can accurately describe the sorption
upon a solid surface of a solute diluted in the flowing fluid [17,18].
More specifically, it can be considered that the solute diluted in the
bulk phase is initially adsorbed by the solid surface where a heter-
ogeneous reaction takes place and its products, which are assumed
to be inactive and of very low concentrations, are again desorbed in
the bulk phase. The adsorption is assumed to occur due to vacant
sites that are normally distributed over the surface area while the
whole process is determined by an overall rate according to the
flow regime and thermodynamics [19].

The major issue of typical macroscopic modeling for such cases
(or even simpler) can be identified at the a priori definition of some
macroscopic quantities necessary to solve equations, although nor-
mally derived from the solution of these equations. So far, mainly
empirical or semi-empirical correlations for these parameters have
been proposed based on experimental measurements of specific
systems [20,21]. On the other hand, the generalized treatment of
such a problem corresponds to theoretical estimations of these
quantities where the volume averaging concept is a frequently
employed tool for the large scale modeling of processes taking
place in porous media, eliminating the influence of porous
geometry on transport results [22–24]. Starting from transport

http://dx.doi.org/10.1016/j.seppur.2011.07.028
mailto:fkoutel@cc.uoi.gr
http://dx.doi.org/10.1016/j.seppur.2011.07.028
http://www.sciencedirect.com/science/journal/13835866
http://www.elsevier.com/locate/seppur


Nomenclature

ALS area of the liquid-solid interface
CL concentration of the tracer in the liquid phase
CLS concentration of the tracer on the solid surface
DL molecular diffusivity of diffusing species in the liquid

phase
ka; kd, ks adsorption, desorption and heterogeneous reaction rate

constants, respectively
L characteristic length of liquid phase
N Avogadro’s number
n order of the heterogeneous reaction
nLS unit normal vector directed from liquid to solid phase
p pressure field of flowing liquid phase
Pe Peclet number defined in the liquid phase [=hviLL=DL]
Rn rate of sorption occurring on the liquid–solid interface
rn dimensionless sorption rate
u dimensionless velocity field in the b-phase
v velocity field in the b-phase

V total volume
VL volume of liquid phase
y dummy quantity associated with b-phase

Greek letters
a� dimensionless mass transfer coefficient
eL volume fraction of the liquid phase
fL transformed variable, used in Eq. (5)
l viscosity of flowing liquid phase
nm total number of available sites for sorption
/L scalar variable used for the decomposition, as in [21,26]

Other symbols
hQi superficial volume average of any quantity Q
hQiL interstitial volume average of any quantity Q in the li-

quid phase
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equations at the micro-scale (pore) level, the spatial averaging
theorem is applied along with the proper assumptions, leading to
the estimation of macroscopic quantities such as mass transfer
coefficient and dispersion tensor [25]. To further simplify the
mathematical modeling and eliminate the simulation effort, the
majority of the above-mentioned models have been applied in
quite simplistic domains, such as unit cells, since the focus was
on the interfacial mass exchange rather than the representation
of the medium in a realistic manner.

All the above concepts have been applied to granular media by
Coutelieris et al. [16] where the mass transport problem was
solved when an adsorption/reaction/desorption mechanism de-
scribed adsorption of the diluted mass on the solid adsorbers (par-
ticle) surface. A comparison of different sorption mechanisms in
terms of adsorption efficiency was also included in this research,
where the assumption of instantaneous adsorption was found to
greatly overestimate adsorption efficiency compared to that ob-
tained using the adsorption–reaction–desorption model. The parti-
cle-in-cell concept has been adopted here. The idea behind this
concept is the ‘‘cell approach’’, where the medium is considered
an assemblage of unit cells gathered in a regular manner. Accord-
ingly, it was widely accepted that the unit cell adequately repre-
sents the entire medium, therefore processes occurring through
the porous structure are described sufficiently by those occurring
in the unit cell. As grains are usually spherical, sphere-in-cell mod-
els are based on the representation of the overall solid mass of the
swarm by a solid spherical body embedded in a spherical liquid
envelope. The boundary conditions imposed on the outer surface
of the envelope are supposed to adequately represent the interac-
tions with other grains of the swarm. Obviously, the thickness of
the surrounding fluid layer is adjusted so the ratio of the solid vol-
ume to the volume of the liquid envelope represents exactly the
solid volume fraction of the porous medium. The main advantage
of these models is that an analytical expression for the stream
function can be obtained much easier than in numerical investiga-
tions. The spherical shape corresponds to a formulation that leads
to axially symmetric flow and that has a simple analytical solution
of closed form which can therefore be readily used for heat and
mass transport calculations.

In the present work, the adsorption/heterogeneous reaction/
desorption mechanism applied in [16] was applied for the convec-
tion-diffusion problem in stochastically constructed three-dimen-
sional sphere assemblages, which are assumed to represent
granular porous media. The aim is to apply the spatial averaging
approach to these complicated processes to quantify mass transfer
from fluid to solid phases of the medium and to investigate how
different geometrical and physicochemical parameters (i.e. poros-
ity, diffusivity and Peclet number) affect it. To demonstrate the
validity of this approach, the present model has been verified
against other simulation and experimental results.

2. Mathematical formulation

The area of interest is a porous domain consisting of a flowing
aqueous phase (L-phase) and a solid phase (S-phase). A tracer is
advected by the flowing liquid phase, being sorpted in the
liquid–solid interface. The governing processes are diffusion and
advection in the liquid phase while the liquid–solid interface is
characterized by the adsorption/reaction/desorption mechanism
of the tracer (see below).

By assuming that the bulk phase is chemically neutral, the pore-
level transport of the tracer in the b-phase is described by the stea-
dy state convection-diffusion equation:

r � ðvCLÞ ¼ DLr2CL ð1Þ

where CL is concentration, v is the fluid velocity and DL is the diffu-
sivity in the liquid phase.

To assure the continuity of the mass fluxes on the solid–liquid
interfaces, the following boundary condition is applied:

nLS � rCL ¼ Rn at ALS ð2Þ

where the overall sorption rate Rn is dependent on the type of sorp-
tion process considered. For a typical adsorption/heterogeneous
reaction/desorption mechanism for the tracer upon the solid sur-
face [18,19], the rate Rn is given as:

Rn ¼ ksC
n
LS ð3Þ

where ks is the rate constant of the heterogeneous reaction of order
n upon the surface. By considering a three step (adsorption/hetero-
geneous reaction/desorption) concept of the sorption process
involving the theory of active (vacant) sites [18,15,16], and by
assuming very rapid (instantaneous) desorption for the chemically
neutral desorbed product, the equality of the rates per step corre-
sponds to a non-linear equation for the concentration of the tracer
upon the solid surface, CLS, as follows [15]:

ksC
n
LS þ ½kd þ kaCLN�CLS � kaCLnm ¼ 0 ð4Þ



F.A. Coutelieris / Separation and Purification Technology 81 (2011) 279–285 281
where ka and kd denote the adsorption and desorption rate con-
stants of the tracer, respectively, nm is the total number of available
sites for sorption and N is the Avogadro’s number. The first term of
the above equation represents the molar flux due to the reaction,
the second term corresponds to the mass flux approaching the sur-
face, and the final term describes the flux due to adsorption [16].
Overall, the above equation correlates the hard-to-measure surface
concentration of the tracer, CLS, with the concentration in the bulk
phase very close to the solid surface, CL, by considering the balance
for the active sites on the adsorbing surface. In general, only the
cases of n ¼ 0, n ¼ 1 and n ¼ 2 are of practical importance but zero
order reactions have very limited applications [18]. Therefore, the
present investigation deals only with first (n ¼ 1) and second
(n ¼ 2) order heterogeneous reactions. Finally, it should be stressed
that this boundary condition implies non-linearity in the whole
approach.

As shown elsewhere [21,22,25], the solution of the micro-scale
mass transport problem and the analogous micro-scale flow-field
is not sufficient to accurately represent macroscopic quantities
such as mass transport coefficient. To solve this, the volume-aver-
aging technique has been found a powerful tool [21–26]. Following
this procedure, which is presented briefly in Table 1 and in detail
elsewhere [21,26], the above problem can be transformed to the
following dimensionless system:

Peu � rfL ¼ r2fL � e�1
L in the liquid phase ð5Þ

nLS � rfL ¼ rn at ALS ð6Þ

where Pe ¼ hui
LL

DL
is the Peclet number defined in the liquid phase by

using a length L characteristic for this phase, u is the dimensionless
velocity vector, fL is the scalar variable used for the decomposition,
and rn is the dimensionless sorption rate.

The dimensionless mass transfer coefficient is simply [21,26]:

a� ¼ � eL

hfLi
ð7Þ

Brackets denote averages over the total volume V or the volume
of the aqueous phase, VL, where the superficial volume average is
defined as:

hyLi ¼
1
V

Z
VL

yLdV ð8aÞ

and the interstitial volume average as:

hyLi
L ¼ 1

VL

Z
VL

yLdV ð8bÞ
Table 1
The spatial averaging technique (as in [21,26]).

Differential equations
with boundary and
compatibility
conditions

Mass transfer
coefficient

Pore level formulation r � ðvCLÞ ¼ DLr2CL

nLS � rCL ¼ Rn at ALS

Decomposition

CL ¼ hCLiL þ C0L
vL ¼ hvLiL þ v0L

v � rsL ¼ DLr2sL � e�1
L a a ¼ DL

V

R
ALS

nLS � rsLdA

nLS � rsL ¼ Rnat ALS

hsLi ¼ 0
Transformation sL ¼ 1þ a�fL Peu � rfL ¼ r2fL � e�1

L
a� ¼ � eL

hfLi

nLS � rfL ¼ Rn at ALS
3. Simulations

3.1. Geometry

To define a 3D domain to solve flow and transport problems, a
granular porous medium was constructed in the form of a spherical
particle assemblage. Specifically, representation of the domains
under consideration was achieved as follows:

Step 1. Define values for (a) porosity and (b) active surface area.
Step 2. Calculate the mean grain diameter by assuming uniform

grain distribution.
Step 3. By using a random number generator, select the position

of the sphere’s center, being in a box of specified dimen-
sions (3 � 2 � 3 mm, see [32]).

Step 4. By using a random number generator, select a radius
supposed to follow the log-normal distribution.

Step 5. Check if the void space around the sphere is free: if ‘‘yes’’,
accept the radius value, otherwise repeat Step 4 above.

Step 6. Pose the sphere.
Step 7. Repeat Steps 3–6 until the volume of the positioned

spheres satisfies the pre-defined porosity value.
Step 8. Calculate the mean diameter of the grains.
Step 9. Compare with the pre-defined mean diameter.

Step 10. Repeat Steps 3–9 until the relative difference between
the pre-defined mean diameter and the calculated mean
diameter is lower than 0.001%.

The surface to volume ratio, S/V, for a typical porous medium of
porosity 0.43 is approximately 10,000 [27]. This corresponds to a
mean grain diameter of �0.00056 m and �110 spheres. These val-
ues may vary slightly due to statistics (log-normal distribution for
sphere diameters) but this variation should be kept below 2% to
satisfy the convergence criteria in Steps 7 and 10 of the above algo-
rithm. A graphical representation of the abovementioned represen-
tative medium is presented in Fig. 1 and a randomly selected 2D
cut of this domain in is shown Fig. 2, where the grid for the
numerical solution is also depicted (see below). Obviously, many
three-dimensional realizations could be generated by the above
algorithm for a specific porosity value. Therefore, it is necessary
Fig. 1. A three-dimensional representation of the porous medium.



Fig. 2. A selected two-dimensional cut of the simulated geometry discretized by an
unstructured grid.

Fig. 3. Flow field in the representative porous medium.
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to validate the results against these configurations to ensure that
the macroscopic results are independent of each specific realiza-
tion. Such a validation will follow.

3.2. Algorithm

To adequately simulate the above-described problem, an algo-
rithmic procedure was developed as follows:

� Solve the flow problem at the microscopic level and calculate
interstitial and superficial velocity fields.
� Formulate the mass transport problem at the microscopic level.
� Decompose local velocity and concentration in terms of an

interstitial average and a fluctuation.
� Describe concentration fluctuations in terms of linear combina-

tions of interstitial averaged concentration and its gradient.
� Solve the closure problem.
� Integrate the resulting quantities to calculate macroscopic

coefficients.

3.3. Numerical scheme

The size of the digitized domains was 102 � 102 � 102 grid
points for all the simulations, corresponding to an unstructured
grid consisting of more than 1 million cells (see Figs. 1 and 2).
The grid spacing was chosen to be non-uniform because it has been
proved that appropriately non-uniform discretization performs
better than the equal-spaced one [28]. For the numerical solution
of the closure boundary value problem, a non-uniform finite differ-
ence scheme with upwinding was used and the resulting linear
systems of equations were solved using Successive Over-Relaxa-
tion (SOR), which is accurate enough for such a system. Finally, a
numerical algorithm involving a typical Newton method for non-
linear systems in conjunction with the finite differences scheme,
was modified and adopted to handle the non-linearity of the sys-
tem, when necessary [29]. This is because the heterogeneous reac-
tions of orders higher than one introduce nonlinearity into the
system through the boundary condition described by Eq. (3). To
achieve convergence at each time step, the values of the residuals
for all the unknown quantities (velocity components, concentra-
tion) should be lower than 10�4. For those purposes, the numerical
solution for the problem described above was obtained using a
FORTRAN code and the computational needs were satisfied by an
Intel Pentium 3.2 GHz computer. The steady-state condition was
assumed to be achieved whenever the relative difference for all
the results of two sequential time-steps was lower than 0.001%. Gi-
ven a specific randomly constructed domain, the necessary time
for each run was approximately 12 hours (including the solution
for the flow-field).

3.4. Boundary conditions

Further to the inner boundary condition for mass exchange on
the solid–liquid interface (described by Eq. (3)), the outer bound-
ary conditions are: constant concentration has been applied at
the inlet (face ABCD at Fig. 1), zero concentration has been applied
at the outlet (face EFGH at Fig. 1), and periodicity has been applied
at to the other four surfaces (ABEF with DHGC and AEDH with
BFGC in Fig. 1).

3.5. Flow-field

The velocity field was computed numerically by solving the
Stokes equations

rp ¼ lr2v ð9aÞ

r � v ¼ 0 ð9bÞ

v ¼ 0atAbr ð9cÞ

where v, p, and l are the velocity vector, pressure and fluid viscos-
ity, respectively. Regarding outer boundary conditions, constant
pressure drop has been applied between inlet and outlet (faces
ABCD and EFGH at Fig. 1), while periodical conditions have been ap-
plied to the other surfaces. The velocity v at any point has been
afterwards normalized with the characteristic velocity magnitude



Table 3
Grid independence (eL ¼ 0:43, Pe ¼ 1).

Grid points n a�

10648 1 19.46
74088 1 22.23

238328 1 16.44
551368 1 19.02

1061208 1 20.93
3511808 1 20.93

10648 2 11.34
74088 2 9.81
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to obtain the dimensionless velocity u used in Eq. (5). The proce-
dure for solving the 3D Stokes flow problem involves discretization
in terms of three-dimensional elements and was as follows [30]: At
the pore level, a staggered marker-and-cell (MAC) mesh [30,31] is
used, with the pressure defined at the center of the cell and the
velocity components defined along the corresponding face
boundaries. The resulting linear system of equations is solved by
a successive over-relaxation (SOR) method. An initial guess for p
is determined through the solution of a Laplace equation. Next,
the velocity vector v is calculated from the corresponding momen-
tum balance and the continuity equation r � v ¼ 0. The pressure is
corrected through an artificial compressibility equation of the form
[30–32]:

dp
dt
¼ r � v ð10Þ

This approach to determine the velocity field has been widely
validated elsewhere in terms of both the velocity field and corre-
sponding permeability [31]. A typical result for the above-men-
tioned flow-field is depicted in Fig. 3, where a 2D cut of the
medium (the same as in Fig. 2) is considered in order for the veloc-
ity vector to be visualized clearly.
238328 2 12.67
551368 2 15.40

1061208 2 19.36
3511808 2 19.36
4. Results and discussion

The results were initially validated against the randomness of
the structure, as previously discussed. More precisely, the mass
transfer coefficient a� was calculated for several different deposi-
tions of spheres while the porosity value was kept constant
(=0.43). It was found that the random deposition does not signifi-
cantly affect mass transfer to the solid phase, as shown in Table
2. Dependence of the solution on the grid was then also examined
in terms of mass transfer coefficient. It was found that a discretiza-
tion of 102 � 102 � 102 points is more than sufficient for adequate
calculations (see Table 3). It must be noted that the parametric
analysis for the grid influence is limited in the order only, as this
is the parameter that introduces the non-linearity, thus the solu-
tion and the grid are more sensitive in it.

The relative agreement between the results produced by con-
sidering the approximation by [16] and those obtained using the
above technique is presented in Fig. 4. By assuming a typical value
for nm (1 active site per Å2), the values of the sorption constants
Table 2
Independence on the random deposition (eL ¼ 0:43).

Different random
assemblages

Pe n a�

Case 1 1 1 20.93
Case 2 1 1 20.83
Case 3 1 1 21.01
Case 4 1 1 20.77
Case 5 1 1 20.96
Case 1 100 1 46.55
Case 2 100 1 45.87
Case 3 100 1 46.11
Case 4 100 1 47.02
Case 5 100 1 46.39
Case 1 1 2 19.36
Case 2 1 2 19.91
Case 3 1 2 19.07
Case 4 1 2 18.66
Case 5 1 2 19.12
Case 1 100 2 45.88
Case 2 100 2 45.01
Case 3 100 2 46.99
Case 4 100 2 45.85
Case 5 100 2 46.02
were (before the non-dimensionalization of the problems)
ka = 1 � 10�30 m3 s�1, kd = 8 � 10�3 s�1 and ks = 8 � 10�3 � 100(1�n)

(kg m�2)1�n s�1. These values can be considered as typical [18] and
are used in the simulations presented here unless otherwise stated.
The figure compares the respective mass transfer coefficient for the
standard porosity e = 0.43 while the adsorption/reaction/desorp-
tion mechanism includes heterogeneous reaction of first (n = 1)
and second (n = 2) order. Regarding the pore-level simulations
from [16], a discrepancy from the results of the current model is
always observed, thus indicating the underestimation of macro-
scopic mass transport quantities when calculated using pore-level
Fig. 4. Comparison between the results of the current model with those found in
the literature.

Fig. 5. The influence of porosity on mass transport.



Fig. 6. Dependence of mass transport on the ratio of the reaction to the adsorption rates (a) and on the ratio of desorption to adsorption rates (b).
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approaches in small-scale domains, as mentioned in related litera-
ture [33]. In terms of physical interpretation, Fig. 4 depicts the ef-
fect of convection on mass transport, where it is shown that the
stronger the convection, the more efficient the tracer transport
from the fluid to the solid phase, at least for low and intermediate
porosity values, which correspond to relatively high amounts of so-
lid absorbers in the medium that are active and absorb the tracer.
Finally, the order of the reaction does not seem to significantly af-
fect the results, or the agreement between the two approaches.
Only first order reaction is considered hereafter.

The influence of the volume porosity of the medium on mass
transport is presented in Fig. 5. It is clearly shown that porosity
is an unfavorable parameter for adsorption, since the void space in-
creases as porosity increases (although the active solid surface area
does not necessarily decrease), thus corresponding to high possi-
bility for the tracer to escape from the porous material through
the void space. For high porosity values, as Peclet values increase,
the transport process becomes more and more convective, thus the
mass transport becomes less effective, i.e. high amounts of the tra-
cer have the ability to escape from the medium. On the other hand,
low porosity values correspond to large amounts of solid phase in
the medium, thus convection favors mass transport since the tracer
is forced to approach the absorbing surfaces. These two competi-
tive phenomena are translated through the cross of the curves
shown in Fig. 5, which correspond to a porosity value where both
mechanisms are of equivalent strength. This value obviously de-
pends on the specific flow and transport characteristics.

Fig. 6 depicts the relative influence of the sorption mechanism,
i.e. the reaction, adsorption and desorption rates, on the mass
transport. More precisely, Fig. 6a presents the mass transfer coeffi-
cient as a function of the ratio of tracer destruction rate due to the
reaction, divided by the tracer destruction rate due to adsorption.
In any case, the values of the rate constants not involved in these
ratios were kept standard. It is observed that the decrement of
the reaction rate (for constant adsorption rate) corresponds to a
consequent decrement of the mass transport because the tracer
has been adsorbed but not destroyed at the same rate and, there-
fore remains on the surface filling the vacant sites, i.e. setting bar-
riers in the sorption process of the tracer. On the other hand, the
increment of reaction rate forces the adsorption to tend asymptot-
ically to a constant value which depends on the geometrical char-
acteristics of the medium. Fig. 6b shows the influence of the ratio
desorption/adsorption rate on the mass transport for heteroge-
neous reaction of the first order. It is observed that the increment
of the desorption rate beyond a critical value corresponds to a de-
crease of this transport to very low values. It is important to note
that the value attained by the mass transfer coefficient before
the critical desorption rate is the same as the asymptotic value of
Fig. 6a, further underlying its independence from the reaction
characteristics.
5. Conclusions

In this paper, the mass transport from a moving Newtonian
fluid to an assemblage of spherical solid absorbers is presented
and the effective mass transfer coefficient between the fluid and
the solid phases is derived. By using the volume-averaging method,
the relative closure problem has been defined and applied in a
three-dimensional artificial representation of a typical granular
porous medium. In addition, a numerical solution of the flow-field
and the corresponding convection-diffusion problem has been
achieved in stochastically constructed three-dimensional sphere
assemblages. In all cases, a sorption mechanism involving first
and second order heterogeneous reaction has been considered.
The numerical solution within this domain allows for the calcula-
tion of the effective mass transfer coefficient. The problem was
shown to be controlled by the Peclet number, while it was found
that higher mass transport corresponds to lower porosity and
increasing Peclet numbers lead to higher mass transport when
the porosity remains low enough to ensure adequate solid mass
within the medium.
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